BESSELY

 

 Bessel functions of the second kind.

  Y = BESSELY(ALPHA,X) calculates Bessel functions of the second kind,

  Y_sub_alpha(X) for real, non-negative order ALPHA and argument X.

  In general, both ALPHA and X may be vectors.  The output Y is

  an m-y-n matrix with m = lenth(X), n = length(ALPHA) and

      Y(i,k) = Y_sub_alpha(k)(X(i)).

  The elements of X can be any nonnegative real values in any order.

  For ALPHA, however, there are two important restrictions: the

  increment in ALPHA must be one, i.e. ALPHA = alpha:1:alpha+n-1,

  and the values must satisfy 0 <= alpha(k) <= 1000.

 

 

  Examples:

 

 

      bessely(3:9,(10:.2:20)') generates the 51-by-7 table on page 401

      of Abramowitz and Stegun, "Handbook of Mathematical Functions."

 

 

  See also: BESSELJ1LK10JI, BESSELIZAP039, BESSELK5OWN8US.