ODE45

 

 Solve differential equations, higher order method.

  ODE45 integrates a system of ordinary differential equations using

  4th and 5th order Runge-Kutta formulas.

  [T,Y] = ODE45('yprime', T0, Tfinal, Y0) integrates the system of

  ordinary differential equations described by the M-file YPRIME.M,

  over the interval T0 to Tfinal, with initial conditions Y0.

  [T, Y] = ODE45(F, T0, Tfinal, Y0, TOL, 1) uses tolerance TOL

  and displays status while the integration proceeds.

 

 

  INPUTHQH08W:

  F     - String containing name of user-supplied problem description.

          Call: yprime = fun(t,y) where F = 'fun'.

          t      - Time (scalar).

          y      - Solution column-vector.

          yprime - Returned derivative column-vector; yprime(i) = dy(i)/dt.

  t0    - Initial value of t.

  tfinal- Final value of t.

  y0    - Initial value column-vector.

  tol   - The desired accuracy. (Default: tol = 1.e-6).

  trace - If nonzero, each step is printed. (Default: trace = 0).

 

 

  OUTPUT:

  T  - Returned integration time points (column-vector).

  Y  - Returned solution, one solution column-vector per tout-value.

 

 

  The result can be displayed by: plot(tout, yout).

 

 

  See also ODE23VQEGTX, ODEDEMO4LOLYOR.