
Beginner's Programming Tutorial
in QBasic

This document is meant to get you started into programming, and assumes you
have some experience with computers and with Windows 95 (or 98, etc.).

Since this tutorial is written for people who don't like to read a lot of text, it
includes a number of examples. Therefore, you can do a lot of work in not much
time.

The more important chapters have a star ().

Feel free to distribute this tutorial, upload it to your website, link to it from your site, etc.

http://www.geocities.com/progsharehouse/qbtutor
Mirror: http://development.freeservers.com/qbtutor

http://www.geocities.com/progsharehouse/qbtutor
http://development.freeservers.com/qbtutor

Table of Contents

Part I: Q-Basics

Chapter 1: Before you start

Chapter 2: Your first program

Chapter 3: Variables

Chapter 4: Retrieving keyboard input from the user

Chapter 5: The IF and THEN commands

Chapter 6: Labels and the GOTO and GOSUB commands

Chapter 7: Loops

Chapter 8: What next?

Part II: Intermediate topics

Chapter 9: QBasic interface

Chapter 10: Adding documentation to your programs

Chapter 11: Reading and writing to files

Chapter 12: Displaying graphics

Chapter 13: Mathematics functions

Chapter 14: Getting the current date and time

Part III: Advanced topics

Chapter 15: Arrays

Chapter 16: Variable types

Chapter 17: Subroutines and functions

Chapter 18: Numbering systems

Chapter 19: Memory

Before you start

Before you can create a program in QBasic, you need the QBasic interpreter. It
is available from your Windows 95 (or 98) CD, or you can download it below.

To access QBasic from the Windows 95 CD:

1. Insert the CD into your CD-ROM drive.

2. Click "browse this CD" (if the menu screen doesn't come up, then browse the CD from
My Computer.

3. Go to the \OTHER\OLDMSDOS directory.

4. Open a program called QBASIC.EXE (this is version 1.1 of the QBasic interpreter).

To access QBasic from the Windows 98 CD:

1. Insert the CD into your CD-ROM drive.

2. Click "browse this CD" (if the menu screen doesn't come up, then browse the CD from
My Computer.

3. Go to the \TOOLS\OLDMSDOS directory.

4. Open a program called QBASIC.EXE (this is version 1.1 of the QBasic interpreter).

Download it here (right-click and press "Save As"):

QBASIC.ZIP (323 KB) - QBasic 1.1 interpreter and sample programs

UNZIP32.EXE (90 KB) - Extracts the ZIP file

To unzip the QBASIC.ZIP file with UNZIP32.EXE:

a. Go to the Start Menu

b. Click Run...

c. Type the following (this loads MS-DOS):

command <Enter>

d. Enter the following in DOS (assuming you saved QBASIC.ZIP to C:\QBASIC):

cd c:\qbasic
unzip32 -n qbasic.zip

http://www.geocities.com/progsharehouse/qbtutor/qbasic.zip
ftp://ftp.simtel.net/pub/simtelnet/gnu/djgpp/unzip32.exe

Your first program

After launching the QBasic interpreter (see before you start), you might see a window requesting
a list of "parameters." If this window comes up, press the Enter key to continue.

You should now see the QBasic interpreter, which has a blue background and displays a dialog
box at the center. (If the interpreter fills the entire screen, then you may want to press "Alt +
Enter," to make it smaller.)

Press the Esc key to hide the dialog box.

QBasic interpreter - main screen

Type the following (including the quotation marks) in the QBasic interpreter:

PRINT "Hello World!" <press Enter>

Now press F5 to run the program. You should now see a black screen, with Hello World at the
top, and Press any key to continue at the bottom.

Press a key on the keyboard to return to the main screen.

(The figure below displays the "output screen.")

QBasic interpreter - output screen

If you run the program again, the interpreter adds another Hello World. QBasic adds Hello
World each time the program is run.

Deleting the program
To erase the current program:

1. Go to the "File" menu.

2. Click "New."

3. The interpreter asks if you want to save the program.

4. Select "No" (or if you'd rather keep the program, select "Yes").

Strings
There are certain types of data (or information) called "strings." Strings contain a sequence of
characters (letters, numbers, and symbols) enclosed in quotation marks. For example, "Hello
World!" is a string.

The following are also strings:

"0123456789"

"This is a string"

"abc123"

"1 + 1 = 2"

"!@#$%^&*()"

Commands
There are also special functions called "commands" (also called "instructions"). A "command"
tells the QBasic interpreter to do something.

The PRINT command tells the QBasic interpreter to print something to the screen. In this case,
the interpreter printed "Hello World!".

TIP: Instead of typing PRINT, you can enter a
question mark. For example:

?"Hello World!"

With the PRINT command, you can also print numbers to the screen. Delete the current program
(unless you already have) and write the following:

PRINT 512 (or ?512)

<press Enter>

Press F5 to run the program. The program outputs:

512

Expressions
An expression is something the interpreter calculates (or evaluates). Such as:

1 + 1 (returns 2)

100 - 47 (returns 53)

3 * 34 (returns 102)

80 / 4 (returns 20)

(100 * 3) + 56 (returns 356)

NOTE: The asterisk (*) means to multiply two
numbers; the slash (/) means to divide

If you pass an expression to the PRINT command, the value returned (a number) is printed.

Clear the current program, and then run the following:

PRINT 512 + 478

Program output:

990

If you enclose the expression with quotation marks, the expression becomes a string and isn't
evaluated. For example:

PRINT "512 + 478"

Output:

512 + 478

TIP: To clear the output screen, use the CLS
command.

CLS

More about the PRINT command
You can use multiple print statements in your program.

PRINT "Hello"
PRINT "World"

Output:

Hello
World

To place World onto the previous line, place a semi-colon after PRINT "Hello".

PRINT "Hello";
PRINT "World"

Output:

HelloWorld

Also, if you put a comma instead of a semi-colon on the first line, the program will insert spaces
between the two words.

PRINT "Hello",
PRINT "World"

Output:

Hello World

Variables

This chapter discusses an important topic in programming, "variables." Please read this section
thoroughly.

A variable is a piece of data kept in the computer's memory (RAM). The location of a variable in
RAM is called the "address."

How a variable is stored in RAM

The following program prints the variable X to the screen:

print X

Since the variable hasn't been assigned a number, the value of the variable is 0. So, the output of
the program is:

0

This next program sets X to 15, and then prints the variable:

X = 15

print X

This time, the output is:

15

In the above example, the number 15 was stored in the computer's RAM at a certain memory
address. Then the PRINT command accessed (or looked at) that address when it printed "15" to
the screen.

(NOTE: The memory address of X is not necessarily 1000000)

ADVANCED TIP: Although you don't normally
need to, you can find the actual memory address
of a variable (X, for example) by using the
VARSEG and VARPTR commands.

PRINT (VARSEG(X) * 65536) + VARPTR(X)

(For more information, see Memory.)

As in the programs above, a variable is accessed by calling its name. Variable names can have a
combination of letters and numbers. The following are valid variables:

Y

num

VALUE

xYz

abc123

Also, you can use multiple variables in your program.

X = 82
Y = 101
Z = 79

PRINT X
PRINT Y
PRINT Z

Output:

82
101
79

(NOTE: The memory addresses of these variables are not necessarily as specified)

Expressions
If you pass an expression to a variable, the expression is evaluated and the variable is set to that
value.

x = 500 + (10 * 7)

PRINT x

Output:

570

You can also use variables as expressions.

rate = 50
time = 2

distance = rate * time

PRINT distance

Output:

100

Plus, you can have both variables and numbers in an expression.

X = 100
Y = X * 7

PRINT Y

Output:

700

TIP: The following increases X by 1:

X = X + 1

Strings

If you add a dollar sign ($) to the end of a variable, the variable is a string.

X$ = "Hello World!"

PRINT X$

Output:

Hello World!

If you try to set a string to a non-string variable, an error occurs.

X = "Hello World!"

The QBasic interpreter says "Type mismatch" when you try to run the above program.

A string can be added to the end of an existing variable string.

X$ = "Hello"
X$ = X$ + "World"

PRINT X$

Output:

HelloWorld

You can also add variable strings together.

a$ = "String1"
b$ = "String2"
c$ = "String3"

d$ = a$ + b$ + c$

PRINT d$

Output:

String1String2String3

Retrieving keyboard input from the user

One way to receive input from the keyboard is with the INPUT command. The INPUT command
allows the user to enter either a string or a number, which is then stored in a variable.

INPUT data$

PRINT data$

When this program is executed, the INPUT command displays a question mark, followed by a
blinking cursor. And when you enter text, the program stores that text into the variable data$,
which is printed to the screen.

TIP: If you place a string and a semi-colon
between INPUT and the variable, the program
will print the string.

INPUT "Enter some text:"; data$

To receive a number, use a non-string variable.

INPUT number

PRINT number

If you enter text instead of a number, the QBasic interpreter displays an error message ("Redo
from start").

Below is another example of the INPUT command:

PRINT "Enter some text:"
INPUT text$

PRINT "Now enter a number:"
INPUT num

PRINT text$
PRINT num

TIP: You can have the question mark displayed
on the previous line by using a semi-colon.

PRINT "Enter some text:";
INPUT text$

The IF and THEN commands

The IF and THEN commands are used to compare an expression and then perform some task
based on that expression.

x = 5

IF x = 5 THEN PRINT "x equals 5"

Since X does equal 5 in this case, the program outputs:

x equals 5

Expression signs
You can also enter the following statements, instead of the equals sign:

x < 5 (x is less than 5)

x > 5 (x is greater than 5)

Run the following:

x = 16

IF (x > 5) THEN PRINT "x is greater than 5"

Output:

x is greater than 5

You can also combine the signs like this:

x <= 5 (x is less than or equal to 5)

x >= 5 (x is greater than or equal to 5)

x <> 5 (x does not equal 5)

Run the following example:

CLS

x = 5

IF (x >= 5) THEN PRINT "x is greater than or equal to 5"
IF (x <= 5) THEN PRINT "x is less than or equal to 5"
IF (x <> 5) THEN PRINT "x does not equal 5"

Output:

x is greater than or equal to 5
x is less than or equal to 5

ELSE

Using the ELSE command, you can have the program perform a different action if the statement
is false.

x = 3

IF x = 5 THEN PRINT "Yes" ELSE PRINT "No"

Since X doesn't equal 5, the output is:

No

END IF

END IF allows you to have multiple commands after the IF...THEN statement, but they must
start on the line after the IF statement. END IF should appear right after the list of commands.

x = 5

IF (x = 5) THEN

INPUT a$
PRINT a$

END IF

The following program uses ELSE with the END IF command:

x = 16

IF (x = 5) THEN

INPUT a$
PRINT a$

ELSE

PRINT x * 2

END IF

Output:

32

TIP: There is a way to have multiple commands
after IF...THEN without using END IF. To do
so, place a colon between each command.

IF (x = 5) THEN INPUT a$: PRINT a$

ELSEIF

The ELSEIF command allows you to perform a secondary action if the first expression was false.
Unlike ELSE, this task is only performed if a specified statement is true.

x = 6

IF (x = 5) THEN
PRINT "Statement 1 is true"

ELSEIF (x = 6) THEN
PRINT "Statement 2 is true"

END IF

Output:

Statement 2 is true

You can have multiple ELSEIF commands, along with ELSE.

x = 8

IF (x = 5) THEN
PRINT "Statement 1 is true"

ELSEIF (x = 6) THEN
PRINT "Statement 2 is true"

ELSEIF (x = 7) THEN
PRINT "Statement 3 is true"

ELSE
PRINT "No above statements are true"

END IF

Output:

No above statements are true

Multiple expressions

You can have more than one expression in IF...THEN by using either the OR operator or the
AND operator.

The OR operator only requires one expression to be true in order to print "Yes" in the following
program:

x = 20

IF (x = 5 OR x = 20) THEN PRINT "Yes"

Output:

Yes

The AND operator requires both expressions to be true.

x = 7

IF (x > 5 AND x < 10) THEN PRINT "True"

Output:

True

This is a slightly more complex example:

x = 16
y = 3

IF ((x > 5 AND x < 10) OR y = 3) THEN PRINT "Correct"

Output (since Y is 3):

Correct

Strings in IF...THEN
So far in this chapter, we've only been dealing with numbers, but you can also use strings with
the IF...THEN command.

x$ = "Hello"

IF (x$ = "Hello" OR x$ = "World") THEN PRINT x$

Output:

Hello

You can also compare two variable strings:

x$ = "Hello"
y$ = "World"

IF (x$ <> y$) THEN PRINT x$; " "; y$

Output:

Hello World

Labels and the GOTO and GOSUB commands

The GOTO and GOSUB commands enables you to jump to certain positions in your program.
Labels are used to specify what point in the program to continue execution.

GOTO

To use GOTO, place a label somewhere in your program, and then enter.

GOTO <label>

Run the following example program:

PRINT "1"

GOTO TheLabel

PRINT "2"

TheLabel:

PRINT "3"

Output (notice how PRINT "2" is skipped):

1
3

TIP: TheLabel can be placed on the same line
as PRINT "3"

TheLabel: PRINT "3"

GOSUB

The GOSUB command is the same as GOTO, except when it encounters a RETURN statement, the
program "returns" back to the GOSUB command. In other words, RETURN continues program
execution immediately after the previous GOSUB statement.

PRINT "1"

GOSUB TheLabel

PRINT "2"

END

TheLabel:

PRINT "3"

RETURN

(Note: The END command exits the program.)

Since the program returns to the GOSUB command, the number 2 is printed this time.

1
3
2

Line numbers
"Line numbers" can be used as labels.

PRINT "1"

GOTO 10

PRINT "2"

10 PRINT "3" (Notice the line number)

You can also write the program like this:

10 PRINT "1"

20 GOTO 40

30 PRINT "2"

40 PRINT "3"

The line numbers don't even have to be in sequence.

17 PRINT "1"

2 GOTO 160

701 PRINT "2"

160 PRINT "3"

Each of these programs output:

1
3

Guessing game
The following is a simple guessing game:

CLS

start:
PRINT "Guess a number between 1 and 10: ";
INPUT num

IF (num < 1 OR num > 10) THEN
PRINT "That is not between 1 and 10"
GOTO start

END IF

IF (num = 6) THEN
PRINT "Correct!!!"

ELSE
PRINT "Try again"
PRINT
GOTO start

END IF

Output (may be slightly different):

Guess a number between 1 and 10: ? 2
Try again

Guess a number between 1 and 10: ? 7
Try again

Guess a number between 1 and 10: ? 6
Correct!!!

TIP: Notice the second PRINT statement under
PRINT "Try again". It adds a blank line
under Try again when the program is
executed.

Loops

"Loops" make it easier to do an action multiple times. There are at least four types of loops:
IF...GOTO, WHILE...WEND, DO...LOOP, and FOR...NEXT.

IF...GOTO

This program uses IF...GOTO to create a loop:

x = 10

start:
PRINT x

x = x + 1 (This adds 1 to x)

IF x < 15 THEN GOTO start

Output:

10
11
12
13
14

WHILE...WEND

The WHILE...WEND commands continue a loop until a specified expression is false.

To use WHILE...WEND:

1. Place an expression after WHILE

2. Enter a list of commands

3. Place WEND at the end

Run the following:

x = 10

WHILE x < 15

PRINT x

x = x + 1

WEND

Output (same as in previous example):

10
11
12
13
14

DO...LOOP

DO...LOOP is exactly the same as WHILE...WEND, except it has at least two slight advantages.
With DO...LOOP you can:

1. Loop until an expression is true

2. Loop at least one time regardless of whether the expression is
true or not.

To use DO...LOOP:

1. Specify whether the loop continues "while" the expression is true
or "until" the expression is true, using the WHILE and UNTIL
statements, respectively.

2. Place an expression after WHILE/UNTIL

3. Enter a list of commands

4. Place LOOP at the end

The following uses the WHILE statement:

x = 10

DO WHILE x < 15

PRINT x

x = x + 1

LOOP

This program uses the UNTIL statement:

x = 10

DO UNTIL x = 15

PRINT x

x = x + 1

LOOP

They both output:

10
11
12
13
14

If you place the expression at the end of the loop instead, the program goes through the loop at
least once.

x = 32

DO

PRINT x

x = x + 1

LOOP WHILE x < 5

This is the output because the loop was only gone through one time:

32

FOR...NEXT

FOR...NEXT provides an easier way to create a loop.

FOR x = 1 TO 5

PRINT x

NEXT x

Output:

1
2
3
4
5

TIP: The X after NEXT is optional (unless you
have a loop within a loop).

Also, you can use the STEP attribute to specify how much X will be increased each time through
the loop.

FOR x = 1 TO 5 STEP 2

PRINT x

NEXT x

Output:

1
3
5

STOPPING LOOPS

To stop a loop prematurely, use the EXIT command, followed by either FOR or DO.

FOR x = 1 TO 5

PRINT x

IF (x = 3) THEN EXIT FOR

NEXT x

Output:

1
2
3

(NOTE: This command only works with the DO...LOOP and FOR...NEXT commands, not with
WHILE...WEND or IF...GOTO.)

What next?

Congratulations! You've finished part 1 of this tutorial. The remaining chapters cover additional
topics, and don't have to be read in sequence (one after another).

If you want, you can move on to a more advanced programming language. The rest of this
chapter briefly explains how you can start using the most popular ones.

One reason you may want to move on, at least at some point, is because QBasic has minimal
capabilities. One example of this is that you can't create executable programs (EXE files) in
QBasic. (QuickBasic 4.5 can create these files, but this product is no longer on the market.)

Other programming languages
Information about the below programming languages can be found at ProgrammingTutorials.com.

C and C++

You can learn C by going to www.cm.cf.ac.uk/Dave/C/CE.html,
www.strath.ac.uk/CC/Courses/NewCcourse/ccourse.html, or
www.programmingtutorials.com/tutorial.asp?id=C.

Before you can create an EXE file in C, you must have a compiler. I recommend downloading the
DJGPP compiler (www.djgpp.com). This program is free, however, the author does accept
donations.

See below for information on getting DJGPP.

You may also want to get the Allegro programming library. This library is useful for creating
games in C.

(NOTE: C++ is a more powerful version of C. It introduces "object oriented" programming. I
recommend learning C++ before moving on to Visual C++.)

Visual C++

With Visual C++, you can create Windows 95 programs, instead of DOS. It costs about $100 for
the standard version.

For more information, click here.

To purchase Visual C++, click here.

Visual Basic

Visual Basic is similar to QBasic. So, if you are highly involved in QBasic, then you may want to
switch directly to Visual Basic, instead of learning C/C++ or Visual C++.

http://www.programmingtutorials.com/
http://www.cm.cf.ac.uk/Dave/C/CE.html
http://www.strath.ac.uk/CC/Courses/NewCcourse/ccourse.html
http://www.programmingtutorials.com/tutorial.asp?id=C
http://www.delorie.com/djgpp
http://www.djgpp.com/
http://www.talula.demon.co.uk/allegro
http://msdn.microsoft.com/visualc
http://msdn.microsoft.com/visualc/prodinfo/purchase/default.asp

With Visual Basic, like Visual C++, you can create Windows 95 programs. It costs about $100 for
the "learning" edition.

For more information, click here.

To purchase Visual Basic, click here.

Getting DJGPP

Since the installation instructions for DJGPP are a little confusing, I've provided my own below.

For more information about DJGPP, visit the DJGPP website at www.delorie.com/djgpp.

Installing DJGPP
1. Create a new folder called DJGPP in drive C.

2. Download and save each of the following to the DJGPP folder:

(If any of the links below are out of date, or if you want to download more DJGPP
packages, you can find the most current files here.)

bnu211b.zip (2.6 MB) - Basic assembler, linker

djdev203.zip (1.5 MB) - DJGPP Basic Development Kit

faq230b.zip (0.6 MB) - Frequently Asked Questions

gcc2953b.zip (1.9 MB) - GCC compiler

gpp2953b.zip (1.7 MB) - C++ compiler

mak3791b.zip (0.3 MB) - Make (processes makefiles)

rh1478b.zip (2.0 MB) - RHIDE, an Integrated Development
Environment, has a built-in editor and debugger

txi40b.zip (0.6 MB) - Info file viewer

unzip32.exe (0.1 MB) - Extracts the ZIP files

3. Unzip each of the files to the DJGPP folder.

If you are using UNZIP32.EXE:

a. Go to the Start Menu

http://msdn.microsoft.com/vbasic
http://msdn.microsoft.com/vbasic/prodinfo/purchase/default.asp
ftp://ftp.simtel.net/pub/simtelnet/gnu/djgpp/v2/readme.1st
http://www.delorie.com/djgpp
http://www.delorie.com/djgpp/zip-picker.html
ftp://ftp.simtel.net/pub/simtelnet/gnu/djgpp/v2gnu/bnu211b.zip
ftp://ftp.simtel.net/pub/simtelnet/gnu/djgpp/v2/djdev203.zip
ftp://ftp.simtel.net/pub/simtelnet/gnu/djgpp/v2/faq230b.zip
ftp://ftp.simtel.net/pub/simtelnet/gnu/djgpp/v2gnu/gcc2953b.zip
ftp://ftp.simtel.net/pub/simtelnet/gnu/djgpp/v2gnu/gpp2953b.zip
ftp://ftp.simtel.net/pub/simtelnet/gnu/djgpp/v2gnu/mak3791b.zip
ftp://ftp.simtel.net/pub/simtelnet/gnu/djgpp/v2apps/rh1478b.zip
ftp://ftp.simtel.net/pub/simtelnet/gnu/djgpp/v2gnu/txi40b.zip
ftp://ftp.simtel.net/pub/simtelnet/gnu/djgpp/unzip32.exe

b. Click Run...

c. Type the following (this loads MS-DOS):

command <Enter>

d. Enter the following in DOS:

cd c:\djgpp

unzip32 -n *.zip

4. Edit your AUTOEXEC.BAT file.

a. Go to the Start Menu

b. Click Run...

c. Type the following (you can "copy and paste" it):

notepad c:\autoexec.bat

d. Add the following lines to the end of the file (you can "copy and paste" this
also):

set DJGPP=C:\DJGPP\DJGPP.ENV
set PATH=C:\DJGPP\BIN;%PATH%

e. Go to the File menu.

f. Click Save.

g. Close the program.

5. Restart your computer.

6. Run a program called RHIDE.EXE in the c:\djgpp\bin folder.

QBasic interface

This chapter gives a brief overview of the QBasic interface.

The interface has the following features:

1. Window displaying the current program

2. Menu

3. Name of current program

4. Window to immediately execute a command

5. Status bar

6. Status of Caps Lock and Num Lock

7. Current line of cursor

8. Current column of cursor

QBasic interface

Current program
The current program is displayed in the middle of the screen, and covers most of the QBasic
interface.

Menu
The menu provides most of the operations for the QBasic editor. Such as opening a file, pasting
text, and searching for a string.

File

New - Clears the current program

Open - Loads a program from disk

Save - Saves the current program to disk

Save As - Saves the program, but under a different name

Print - Prints the selected text, current window, or entire program

Exit - Closes the QBasic interpreter

Edit

Cut - Removes the selected text and stores it in the clipboard

Copy - Copies the text instead of removing it

Paste - Adds the text in the clipboard to the current position of the cursor

Clear - Removes the text without storing it to the clipboard

New Sub - Enables you to create a new subroutine (see Subroutines and Functions)

New Function - Enables you to create a new function (see Subroutines and
Functions)

View

SUBs - Shows the list of current subroutines and functions (see Subroutines and
Functions)

Split - Displays the contents of the current program in two windows. If the window is
already split, this hides the second window (NOTE: The text in each window is
always the same, even if you alter the text in one window)

Output Screen - Shows the QBasic output screen.

Search

Find - Allows you to search for a string of text in the program

Repeat Last Find - Continues the previous search operation

Change - Replaces each instance of a string with another string

Run

Start - Executes the current program

Restart - Starts from the beginning

Continue - Continues execution at the current position

Debug

Step - Processes the next command

Procedure Step - Processes the next command, but does not show QBasic going
inside a subroutine or function

Trace On - Shows the command that is being executed while the program is running

Toggle Breakpoint - Sets or removes a breakpoint. Use this to have the QBasic
interpreter stop when it reaches a specified line in the program

Clear All Breakpoints - Removes all breakpoints in the program

Set Next Statement - Allows you to continue execution at the specified line

Options

Display - Enables you to change display colors, the number of spaces to use for
tabs, and whether or not scroll bars are visible

Help Path - The location of the QBASIC.HLP file

Syntax Checking - Allows you to have the QBasic editor check the syntax of your
program as you type

Help

Index - List of all QBasic commands, keywords, operators, etc.

Contents - The table of contents for QBasic help

Topic - Show help for a specific keyword

Using Help - Displays information on using QBasic help

About - Shows information about the QBasic interpreter

Name of current program
The file name of the current program is displayed near the top of the screen in the center. You
can change the name by selecting "Save As" on the "File" menu.

Immediately execute a command
QBasic provides a way to execute a command without running the current program. To do so,
select the bottom window (under "immediate") and enter a command, then press Enter.

Status bar
The status bar is at the bottom of the screen. It displays a short list commands
(<Shift+F1=Help> <F6=Window> <F2=Subs> <F5=Run> <F8=Step>).

When you highlight an item on the menu, the status bar displays a short description of what the
item does.

Status of Caps Lock and Num Lock
If Caps Lock is set, a "C" is displayed on the right side of the status bar.

If Num Lock is set, an "N" is displayed on the right side of the status bar.

Current line
On the right side of the status bar, the current line of the cursor is displayed.

Current column
On the right side of the status bar, the current column of the cursor is displayed (immediately
after the current line).

Adding documentation to your programs

Documenting your program (also called "commenting") allows you to remind yourself about
something in your program. Plus, if your program is seen by other people, documenting can help
them understand your code.

The REM (remark) command enables you to add comments to your program without the text
being treated like an instruction.

CLS
PRINT "Some text"

REM This text is ignored.

REM This program clears the output screen,
REM and then prints "Some text."

TIP: You can use an apostrophe instead of the
REM command.

' Comment goes here

You can add REM to the same line as another command by placing a colon after the first
instruction.

CLS: REM This command clears the screen
PRINT "Text": REM This command prints "Text" to the screen
PRINT 534: REM This prints the number 534 to the screen

NOTE: If you use an apostrophe instead of REM while doing this, you do not need to add a colon.

CLS ' This command clears the screen
PRINT "Text" ' This command prints "Text" to the screen
PRINT 534 ' This prints the number 534 to the screen

Reading and writing to files

To save data to a file:

1. Call the OPEN command, specifying the file name, file mode
(OUTPUT), and file number.

2. Use PRINT, followed by the file number and the data you want to
write.

3. Close the file using the CLOSE command.

The following opens a file, using mode OUTPUT and number 1, and then saves the text Hello
World! to the file:

OPEN "testfile.dat" FOR OUTPUT AS #1
PRINT #1, "Hello World!"
CLOSE #1

To open a file for "reading," call OPEN and pass INPUT as the file mode. Then you can read the
data by using the INPUT command.

OPEN "testfile.dat" FOR INPUT AS #1
INPUT #1, text$
CLOSE #1

PRINT text$

Output:

Hello World!

Displaying graphics

Before you can show graphics images on the screen, you must call the SCREEN command.
SCREEN sets the graphics mode.

The following program uses graphics mode 13 (320x200) to display a line, then returns back to
text mode:

SCREEN 13

' This starts at 10 pixels from the left, 10 from
' the top and goes to point (100, 100):

LINE (10, 10)-(100, 100)

WHILE INKEY$ = "": WEND ' Waits until a key is pressed

SCREEN 0 ' Returns to text mode

You can also draw a colored line.

SCREEN 13

LINE (10, 10)-(100, 100), 192 ' Dark green

WHILE INKEY$ = "": WEND

SCREEN 0

To draw a single pixel, use PSET.

SCREEN 13

PSET (160, 100)

WHILE INKEY$ = "": WEND

SCREEN 0

The following displays a circle at (160, 100) with a radius of 50:

SCREEN 13

CIRCLE (160, 100), 50

WHILE INKEY$ = "": WEND

SCREEN 0

Finally, to display a square, use LINE.

SCREEN 13

LINE (10, 10)-(100, 100), 192, B ' Notice the B

WHILE INKEY$ = "": WEND

SCREEN 0

Mathematics functions

QBasic provides several functions to do mathematical calculations. A few of them are discussed
here.

SQR

Use SQR to find the "square root" of a number.

PRINT SQR(1)
PRINT SQR(4)
PRINT SQR(9)
PRINT SQR(16)
PRINT SQR(25)

Output:

1
2
3
4
5

ABS

ABS returns the absolute value of a number. In other words, ABS converts a negative number to
a positive number (if you pass a positive number, ABS does nothing).

PRINT ABS(12)
PRINT ABS(-12)

Output:

12
12

COS, SIN, TAN, and ATN
You can do the following trigonometric functions in QBasic:

COS (Cosine)
SIN (Sine)
TAN (Tangent)
ATN (Arctangent, inverse of TAN)

Example:

CONST PI = 3.141593

PRINT COS(PI / 4)
PRINT SIN(PI / 3)
PRINT TAN(-PI / 2)
PRINT ATN(TAN(-PI / 2))

Output:

.7071067

.8660254
6137956
1.570796 (Same as PI / 2)

Getting the current date and time

To get the current time, use the TIME$ command.

PRINT TIME$

The above example returns "military" time. See the following figure:

hour 00 = 12 a.m. (midnight)
hours 01-11 = a.m.
hours 12-23 = p.m.

You can also use TIME$ to set the time.

TIME$ = "15:30:00" ' Sets current time to 3:30 p.m.

Date

To find out the current date, use the DATE$ function.

PRINT DATE$

Like TIME$, you can also set the date.

DATE$ = "01/01/2000"

TIMER

Use TIMER to get the number of seconds since midnight.

PRINT TIMER

Output:

43199.99 (Just before noon)

Arrays

An array is a list of variables of the same type. Arrays are useful for organizing multiple variables.
To create an array, use the DIM (dimension) command.

The following example does not use arrays:

a = 2
b = 4
c = 6
d = 8
e = 10

PRINT a, b, c, d, e

Output:

2 4 6 8 10

This uses an array called vars, which contains 5 variables:

DIM vars(5)

' Each of these are separate variables:
vars(1) = 2
vars(2) = 4
vars(3) = 6
vars(4) = 8
vars(5) = 10

PRINT vars(1), vars(2), vars(3), vars(4), vars(5)

Output:

2 4 6 8 10

How an array of variables is stored in memory
(NOTE: Memory addresses are not necessarily as specified)

The above program can also be written like this:

DIM vars(5)

FOR x = 1 to 5
vars(x) = x * 2

NEXT

FOR x = 1 to 5
PRINT vars(x),

NEXT

Output:

2 4 6 8 10

Strings
You can also create an array of string variables.

DIM vars$(5)

vars$(1) = "Two"
vars$(2) = "Four"
vars$(3) = "Six"
vars$(4) = "Eight"
vars$(5) = "Ten"

PRINT vars$(1), vars$(2), vars$(3), vars$(4), vars$(5)

Output:

Two Four Six Eight Ten

Variable types

The non-string variables we've used in this tutorial are actually called single-precision variables.
These types of variables (SINGLE's) are used to store numbers that can contain a decimal value
(such as 1.89 or 3.141593). Since they have decimal values, they are also known as "floating-
point" variables.

This chapter describes other types of variables used in QBasic.

INTEGER - A non-floating-point variable (no decimal value) that can
store integers between -32,768 and 32,767

LONG - Same as INTEGER, but can contain numbers between
-2,147,483,648 and 2,147,483,647.

DOUBLE - Same as SINGLE, but can have twice as many digits.

To define a variable's type, use DIM with the AS attribute.

DIM var1 AS INTEGER
DIM var2 AS LONG
DIM var3 AS DOUBLE

var1 = 15.28
var2 = -2000000000
var3 = 12345678.12345678

PRINT var1
PRINT var2
PRINT var3

Output:

15 (Notice how the decimal value is removed)
-2000000000
12345678.12345678

Using special characters
You can use special characters to specify a variable's type. These characters can also be used to
specify a number's type.

To do so, place one of the following at the end of a variable (or number):

! (single--actually, this doesn't change anything)

% (integer)

& (long)

(double)

$ (string--as we already know)

Example (notice the number sign on 12345678.12345678):

var1% = 15.28
var2& = -2000000000
var3# = 12345678.12345678#

PRINT var1%
PRINT var2&
PRINT var3#

Output:

15
-2000000000
12345678.12345678

Subroutines and functions

A subroutine (also called a "module") is a "mini-program" inside your program. In other words, it
is a collection of commands--and can be executed anywhere in your program.

To create a subroutine:

1. Go to the "Edit" menu

2. Select "New Sub"

3. Enter a name for the subroutine

4. Type a list of commands between SUB and END SUB

To use the subroutine:

1. Press F2

2. Select "Untitled"

3. Press Enter to return to the "main module"

4. Use CALL to execute the subroutine

TIP: Another way to create a subroutine is by
typing SUB <name> in the main module.

SUB MySub

The following example does not use subroutines:

PRINT "Enter some text:";
INPUT text$
PRINT "The text you entered was: "; text$

PRINT "Enter some text:";
INPUT text$
PRINT "The text you entered was: "; text$

PRINT "Enter some text:";
INPUT text$
PRINT "The text you entered was: "; text$

PRINT "Enter some text:";
INPUT text$
PRINT "The text you entered was: "; text$

PRINT "Enter some text:";
INPUT text$
PRINT "The text you entered was: "; text$

PRINT "Enter some text:";
INPUT text$
PRINT "The text you entered was: "; text$

PRINT "Enter some text:";
INPUT text$
PRINT "The text you entered was: "; text$

By using a subroutine, the above program can be simplified like this:

CALL GetText
CALL GetText
CALL GetText
CALL GetText
CALL GetText
CALL GetText
CALL GetText

SUB GetText

PRINT "Enter some text:";
INPUT text$
PRINT "The text you entered was: "; text$

END SUB

The following is even more concise:

FOR x = 1 TO 7
CALL GetText

NEXT

SUB GetText
PRINT "Enter some text:";
INPUT text$
PRINT "The text you entered was: "; text$

END SUB

Parameters
Parameters are numbers and strings that you pass to a subroutine, much like a QBasic
command.

' This passes 16 as a parameter:

CALL OutputNumber(16)

' Notice the parentheses around the parameter "num."
' Any variables placed inside the parentheses are set as

' the subroutine's parameters.

SUB OutputNumber (num)

PRINT num

END SUB

Output:

16

TIP: Variables created in your program cannot be
used in the subroutines unless you use COMMON
SHARED (followed by a variable) in the main
module.

COMMON SHARED x$

Functions
A function is the same as a subroutine, except it returns a value. Also, you must leave out the
CALL command.

To return a value, set a variable with the same name as the function.

PRINT Add(10, 7)

FUNCTION Add (num1, num2)

Add = num1 + num2

END FUNCTION

Output:

17

Since a function can return a value, the name of the function can end with special characters (see
Variable types, Using special characters).

' Notice the dollar sign ($) after "Add." It means
' the function returns a string.

PRINT Add$("Hello", "World")

FUNCTION Add$ (str1$, str2$)

Add$ = str1$ + str2$

END FUNCTION

Output:

HelloWorld

Numbering systems

(This chapter is provided to help you understand certain parts of chapter 19, Memory.)

Normally, when we use a number such as 110, we understand it to mean "one hundred and
ten," but in this chapter you will see how this is not always the case.

Hexadecimal numbers
We generally use the base 10 (decimal) numbering system, where each digit must be between
0-9; but the "hexadecimal" system (base 16) can also have digits A, B, C, D, E, and F (16 total
digits).

(The hexadecimal numbers in this tutorial are red.)

0 = Zero
1 = One
2 = Two
3 = Three
4 = Four
5 = Five
6 = Six
7 = Seven
8 = Eight
9 = Nine
A = Ten
B = Eleven
C = Twelve
D = Thirteen
E = Fourteen
F = Fifteen

In the base 10 system, you add another digit when you get past the number 9; but with base 16, it
isn't added until after F (or fifteen).

10 = Sixteen
11 = Seventeen
12 = Eighteen
13 = Nineteen
14 = Twenty
15 = Twenty one
16 = Twenty two
17 = Twenty three
18 = Twenty four
19 = Twenty five
1A = Twenty six
1B = Twenty seven
1C = Twenty eight
1D = Twenty nine
1E = Thirty
1F = Thirty one
20 = Thirty two

21 = Thirty three
22 = Thirty four
23 = Thirty five
24 = Thirty six
 .
 .
 .

In the decimal system (base 10), we multiply ten for each time a digit goes to the left.

 10 = 10
 100 = 10 * 10
 1000 = 10 * 10 * 10
10000 = 10 * 10 * 10 * 10
 .
 .
 .

But in the hexadecimal (base 16) system, we multiply sixteen, instead.

 10 = 16 (16)
 100 = 16 * 16 (256)
 1000 = 16 * 16 * 16 (4096)
10000 = 16 * 16 * 16 * 16 (65536)
 .
 .
 .

Therefore, since 10 is 16 and 100 is 256, the number 110 is two hundred and seventy two
(272).

110 = (100 + 10) = (256 + 16) = 272

(To download a number converter, click here.)

TIP: To enter a hexadecimal number in QBasic,
use &H.

&H110

Binary numbers
The "binary" system (base 2) can only have two digits, 0 and 1. Therefore, no binary number has
a digit between 2 and 9.

http://www.geocities.com/progsharehouse/nconv64.htm

(Binary numbers are shown in dark blue.)

 0 = Zero
 1 = One
 10 = Two
 11 = Three
 100 = Four
 101 = Five
 110 = Six
 111 = Seven
 1000 = Eight
 1001 = Nine
 1010 = Ten
 1011 = Eleven
 1100 = Twelve
 1101 = Thirteen
 1110 = Fourteen
 1111 = Fifteen
10000 = Sixteen
10001 = Seventeen
10010 = Eighteen
10011 = Nineteen
10100 = Twenty
 .
 .
 .

Notice how binary numbers can be found by excluding numbers that have a 2, 3, 4, 5, 6, 7, 8, or
9.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 .
 .
 .

 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
 .
 .
 .

In base 10, as explained above, we multiply ten for each time a digit goes to the left.

 10 = 10
 100 = 10 * 10
 1000 = 10 * 10 * 10
10000 = 10 * 10 * 10 * 10
 .
 .
 .

But in binary, we multiply by two.

 10 = 2 (2)
 100 = 2 * 2 (4)
 1000 = 2 * 2 * 2 (8)
10000 = 2 * 2 * 2 * 2 (16)
 .
 .
 .

So, since 10 is 2 and 100 is 4, the number 110 is six.

110 = (10 + 100) = (2 + 4) = 6

(To download a number converter, click here.)

http://www.geocities.com/progsharehouse/nconv64.htm

TIP: Binary (and hexadecimal) numbers are often
written with leading 0's.

0000 (same as 0)
0001 (same as 1)
0010 (same as 10)
0011 (same as 11)

Memory

(Before you study this chapter, you may need to read chapter 18, Numbering systems.)

Bits
A "bit" is the smallest piece of data stored in your computer's memory. The value of a bit can be
either 0 or 1. All data in your computer has a certain number of bits.

Bytes
A "byte" is 8 bits, and can have a value between 0 and 255 (or, in binary, between 0 and
11111111). A character, such as Q, takes up one byte of memory. This is because there are 256
different characters.

(If you don't fully understand bits and bytes, don't worry about it.)

How data is stored
Data is stored in RAM at a certain memory address, as explained in chapter 3 (Variables). Each
address takes up 1 byte of memory. Therefore, it can only have a value between 0 and 255.

A memory address (on a 32-bit computer) can be somewhere between 0 and 4,294,967,295. In
hexadecimal, this is between 0 and FFFFFFFF.

Each memory address is divided into two parts: segments and offsets. See the figure below.

Segments and offsets

A memory address such as 12345678 (in hexadecimal) has a segment of 1234 and an offset of
5678.

A segment can have a value between 0 and 65535 (or between 0 and FFFF). An offset can be
within the same range.

You can find out a memory address of a piece of data by multiplying its segment by 65536 (or
10000, in hexadecimal) and then adding its offset to the result. In QBasic, you can get a
variable's segment by using VARSEG and its offset by using VARPTR.

segment = VARSEG(x)
offset = VARPTR(x)

' This prints the memory address of "x" (in decimal):

PRINT (segment * 65536) + offset

	Before you start
	
	
	
	
	
	
	
	PRINT x

