
User Profiles and System Policies

 System Policy Templates

When you run System Policy Editor, Windows 95 opens the default policy template, which contains
existing policies that you can enable or modify. A template is a listing of the possible policies that you
can use. By default, this template file is named ADMIN.ADM and is stored in the Windows INF
directory.

This section describes how you can create custom system policy templates (.ADM files) and switch
between multiple templates in System Policy Editor.

For example, it might be helpful to have system policy settings for corporate-specific applications,
such as an in-house database, custom front end, or electronic mail package. After a template has
been customized, you can then load the template and use it to set values in the Registry.

Note If you want to define system policies for applications, the applications must be able to read
the Windows 95 Registry.

Creating your own template is helpful when you want to define a specific set of Registry settings in
your system policies, including settings not definable by default through System Policy Editor. As
shown in the following illustration, the template defines the policies you can set through System Policy
Editor. Changes you make there are reflected in the policy file (shown in the example as

 To use a template other than the default template
1.

2. On the Options menu, click Template.

3. Click Open Template, and select an .ADM file to be your template to begin setting system policies.

3. Click Open Template, and select an .ADM file to be your template to begin setting system policies.
Click Open.

4. Click Close to return to System Policy Editor.

You can create your own templates that can be read by System Policy Editor. Users can then load the
template and use it to set values in the Registry. To create a template, use a text editor such as
WordPad to edit or write an .ADM file. You can open the default template named ADMIN.ADM in the
Windows INF directory to use as an example.

A template uses several key words, syntaxes, and symbols, as summarized in the following list.

• Class:

CLASS category_type

• Category:

CATEGORY name
[KEYNAME key_name]
[... policy definition statements ...]

END CATEGORY

• Policy:

POLICY name
[KEYNAME key_name]
[... part definition statements ...]

END POLICY

• Part:

PART name part_type
type-dependent data
[KEYNAME key_name]
VALUENAME value_name

END PART

The following table describes the keywords in system policy templates. Following this table are lists of
the controls and values that can be defined in templates.

System Policy Template Key Words
Template key word Description
CLASS Defines the Registry key that can be edited; the value

must be USER or MACHINE, corresponding to
Hkey_Current_User or Hkey_Local_Machine,
respectively.

CATEGORY name Defines a category in System Policy Editor. If a name
contains spaces, it must be enclosed in quotes. A
category statement can appear only once for each
category name.

END CATEGORY Defines the end of a category and all of its policies.

POLICY name Defines a policy within a category. Policy names that
contain spaces must be enclosed in quotes.

END POLICY Defines the end of a policy and all its parts.

PART name Defines one or more controls that can be used to set
the values of a policy. Part names that contain spaces
must be enclosed in quotes. Policy part types and
type-dependent data are described in the following
tables.

END PART Defines the end of the control list.

VALUEON Specifies the setting to assign to the value when the
policy is checked.

VALUEOFF Specifies the setting to assign to the value when it is
not checked.

KEYNAME Specifies the full path of the Registry key. This is an
optional Registry key name to use for the category or
policy. If there is a key name specified, it is used by
all child categories, policies, and parts, unless they
define a key name of their own.

VALUENAME Defines the Registry value entry name.

VALUE Specifies the Registry value to set to a VALUENAME.

!! Indicates a string value.

[strings] Defines a section containing string values.

System Policy Template Part Control Indicators
Part Control
Indicator

Description

CHECKBOX Displays a check box. The value is nonzero if

is unchecked.

NUMERIC
accepts a numeric value.

EDITTEXT Displays an edit field that accepts alphanumeric text.

COMBOBOX Displays a combo box, which is an edit field plus a
drop-down list for suggested values.

TEXT Displays a line of static (label) text. There is no
Registry value associated with this part type.

DROPDOWNLIST Displays a drop-down list. The user can choose from
only one of the entries supplied. The main advantage
of a drop-down list is that, based on the user’s
selection, a number of extra Registry edits can be
performed.

LISTBOX Displays a list box with Add and Remove buttons.
This is the only part type that can be used to manage
multiple values under one key.

System Policy Template Type-Specific Information
Type-specific
modifier

Description

CHECKBOX:
DEFCHECKED Causes the check box initially to be checked.

VALUEON
check box. For example: VALUEON "On" writes “On”
to the Registry.

VALUEOFF
check box. For example: VALUEOFF "Off" writes

check box. For example: VALUEOFF "Off" writes
“Off” to the Registry.

ACTIONLISTON
“on.”

ACTIONLISTOFF
“off.”

NUMERIC:
DEFAULT value

statement is not specified, the edit field is initially
empty.

MIN value Specifies minimum value for number. Default value is
0.

MAX value Specifies maximum value for number. Default value is
9999.

SPIN value Specifies increments to use for a spin control.
Specifying SPIN 0 removes the spin control; SPIN 1 is
the default.

REQUIRED
containing this part to be enabled unless a value has
been entered.

TXTCONVERT Writes values as strings rather than binary values.

EDITTEXT:
DEFAULT value

this is not specified, the field is empty initially.

MAXLEN value Specifies the maximum length of the string in the edit
field.

REQUIRED
containing this part to be enabled unless a value has
been entered.

COMBOBOX:
Accepts all the key words that EDITTEXT does, plus
SUGGESTIONS.

SUGGESTIONS Begins a list of suggestions to be placed in the
drop-down list. Suggestions are separated with
spaces and can be enclosed by quotes. The list is
terminated with END SUGGESTIONS. For example:

SUGGESTIONS
Alaska Alabama Mississippi "New York"
END SUGGESTIONS

TEXT: Contains no type-specific data.

DROPDOWNLIST:
REQUIRED

containing this part to be enabled unless a value has
been entered.

ITEMLIST Begins a list of the items in the drop-down list. The
end of the list must be terminated by END ITEMLIST.
Each item in the list is specified as follows:

NAME name VALUE value
[ACTIONLIST actionlist]
...

name is the text to be displayed in the related
drop-down list.

value is the value to be written for the part’s value if
this item is selected. Values are assumed to be
strings, unless they are preceded by the key word
NUMERIC. For example:

VALUE "Some value"
VALUE NUMERIC 1

If the VALUE key word is followed by the DELETE key
word (that is, VALUE DELETE), then this Registry
name/value pair will be deleted.

actionlist is an optional list to be used if this value is
selected.

LISTBOX:
VALUENAME Cannot be used with the list box type, because there

is no single value name associated with this type. By
default, only one column appears in the list box, and
for each entry a value is created with an identical
value name and value data. For instance, the List
Entry value in the list box would create a value named
“List Entry” containing “List Entry” as data.

VALUEPREFIX
prefix

Defines the prefix to be used in determining value

naming scheme listed earlier in this table. The prefix
can be empty (" "), which will cause the value names
to be “1,” “2,” and so on. A prefix of SomeName will
generate value names “SomeName1,” “SomeName2,”
and so on.

EXPLICITVALUE Causes the user to specify the value data and the
value name. The list box shows two columns for each
item, one for the name and one for the data. This key
word cannot be used with the VALUEPREFIX key
word.

ADDITIVE If specified, values set in the list box are added to
whatever values exist in the target Registry. Existing
values are not deleted; by default, the content of list
boxes will “override” whatever values are set in the

in the policy file which causes existing values to be
deleted before the values set in the policy file are
merged.

Strings:
!! Indicates a string value. For example:

!!StrConst

[strings] Defines a section of string values; the values are
defined in the following format:

var_name=string value

For example:

StrConst="Control Name"

Comments Can be added by preceding the line with a semicolon

Comments Can be added by preceding the line with a semicolon
(;).

The following example shows a template that uses all the types of controls. This sample .ADM file is
included with the Windows 95 Resource Kit utilities.

CLASS USER
CATEGORY "Control Category 1"
KEYNAME KeyName1

POLICY "Policy1"
; actions to take when policy is checked
ACTIONLISTON

KEYNAME KeyName1
VALUENAME Checked1 VALUE "AAA"
VALUENAME Checked2 VALUE "BBB"
VALUENAME Checked3 VALUE "CCC"
KEYNAME KeyName2
VALUENAME Unchecked1 VALUE DELETE
VALUENAME Unchecked2 VALUE DELETE
VALUENAME Unchecked3 VALUE "not checked"

END ACTIONLISTON
; actions to take when policy is unchecked
ACTIONLISTOFF

KEYNAME KeyName1
VALUENAME Checked1 VALUE ""
VALUENAME Checked2 VALUE ""
VALUENAME Checked3 VALUE ""
KEYNAME KeyName2
VALUENAME Unchecked1 VALUE "AAA"
VALUENAME Unchecked2 VALUE "BBB"
VALUENAME Unchecked3 VALUE "CCC"

END ACTIONLISTOFF
END POLICY
POLICY "CheckBox"

PART "CheckBox1:" CHECKBOX DEFCHECKED
VALUENAME "CheckBox Control"
VALUEON "is checked" VALUEOFF "is not checked"

END PART
END POLICY

END CATEGORY
CATEGORY "Control Category 2"
KEYNAME KeyName3

POLICY "Static and Spin"
PART "Below is a spin control" TEXT
END PART
PART "Spin:" NUMERIC SPIN 10 REQUIRED
MAX 110
VALUENAME "Spin"
END PART

END POLICY
CATEGORY "Sub Category 1"
KEYNAME KeyName4

POLICY "ComboBox"
PART "Combo:" COMBOBOX
SUGGESTIONS

One Two Three Four
END SUGGESTIONS
VALUENAME "Combo Control"

END PART
END POLICY
POLICY "Drop Down List"

PART "DropDown" DROPDOWNLIST
VALUENAME DropDown REQUIRED
ITEMLIST

NAME "Name One" VALUE "Value One"
ACTIONLIST

VALUENAME "Value Name 1" VALUE "Value 1"
VALUENAME "Value Name 2" VALUE "Value 2"

END ACTIONLIST
NAME "Name Two" VALUE "Value Two"
ACTIONLIST

VALUENAME "Value Name 1" VALUE DELETE
VALUENAME "Value Name 2" VALUE DELETE

END ACTIONLIST
NAME "Name Three" VALUE NUMERIC 333
NAME "Name Four" VALUE "Value Four"

END ITEMLIST
END Part

END POLICY
END CATEGORY
POLICY "Edit"

PART "Edit" EDITTEXT
MAXLEN 10
VALUENAME Edit
DEFAULT "Edit Default"
END Part

END POLICY
POLICY "List Box"
KEYNAME KeyName5

PART "List Box Control" LISTBOX EXPLICITVALUE
END PART

END POLICY
END CATEGORY

The following shows the policies created by this sample .ADM file as they appear in System Policy
Editor.

