
SC RRIPTTSOP

ADOBE ILLUSTRATOR® DOCUMENT FORMAT
Specification
Version 2.0

July 18, 1990
PostScript® Developer Support Group

Adobe Systems Incorporated
1585 Charleston Road PO Box 7900
Mountain View, CA 94039-7900
(415) 961-4400

PN LPS5007

2 ©1990 Adobe Systems Incorporated. All rights reserved.

Copyright © 1990, 1989, 1988 Adobe Systems Incorporated. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior writ-
ten consent of the publisher. Any software referred to herein is furnished under license and may only
be used or copied in accordance with the terms of such license.

Adobe, PostScript, the PostScript logo, and Adobe Illustrator are registered trademarks of Adobe Sys-
tems Incorporated. Adobe Illustrator 88 is a trademark of Adobe Systems Incorporated. Apple, Mac-
intosh, and LaserWriter are registered trademarks of Apple Computer, Inc. PANTONE is a registered
trademark of Pantone, Inc.

This publication and the information herein is furnished AS IS, is subject to change without notice, and
should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporat-
ed assumes no responsibility or liability for any errors or inaccuracies, makes no warranty of any kind
(express, implied or statutory) with respect to this publication, and expressly disclaims any and all
warranties of merchantability, fitness for particular purposes and noninfringment of third party rights.

©1990 Adobe Systems Incorporated. All rights reserved. 3

ADOBE ILLUSTRATOR® DOCUMENT FORMAT
Specification
Version 2.0

July 18, 1990
PostScript® Developer Support Group
(415) 961-4111

1. INTRODUCTION

This Technical Note describes the format of the document files in which Adobe
Illustrator® stores graphic illustrations. An Adobe Illustrator document is a PostScript®
page description which conforms to the Adobe PostScript Document Structuring
Conventions, version 2.0. The page description may be executed by any PostScript
interpreter to render the illustration on a display or on a printed page. The document may
also be imported by page composition systems and other illustration editing applications.

Adobe Illustrator can store a document in Encapsulated PostScript File (EPS) format. A
low resolution (72 dpi) image of the illustration may be included as part of the EPS file as
an option. This image may be used by a page composition system for picture placement,
scaling, cropping, and previewing.

Although an intimate knowledge of the Postscript page description language is not essential
for understanding this document there are several notions that the reader should understand.
The principal notion is how the desired marks on a page are described. PostScript page
descriptions are based on the notion of a path. A path is a mathematical line constructed
from possibly disjoint segments. Path segments may be either straight lines or Bézier
curves. A path may be open, meaning that the beginning and end points are distinct, or
closed, meaning that the beginning and end points on the path are the same. Opaque ink is
put on the page either by stroking the path to trace it with a line of a given thickness or by
filling the path to put ink everywhere inside the path. The thickness of the line used to stroke
a path, the color of the ink to use, and so on, are attributes of the PostScript graphics state
which may be changed by a PostScript program to control how paths are marked. Text is a
special case of the more general drawing facilities in the language. Individual characters
are rendered by pre-defined PostScript programs which construct and then fill or stroke a
path. The second important notion is that the execution model for the language is based on
stacks. The operands for an operator are pushed onto a stack and then the operator is
executed. Each operator pops its operands off the stack and pushes its results back onto the
stack.

The coordinate system used by Adobe Illustrator is the same as the PostScript language
default user space in which the origin is in the lower left-hand corner of the page, the x axis
extends horizontally to the right, and the y axis extends vertically upward. The length of a
unit along each axis is 1/72 of an inch, which is approximately one printer’s point (1/72.27
inch).

The reader is referred to the PostScript Language Reference Manual (Addison-Wesley,
ISBN 0-201-10174-2), Document Structuring Conventions, version 2.0 (Technical Note
LPS5001), and Encapsulated PostScript Files, version 1.2 (Technical Note LPS5002) for

SC RRIPTTSOP

4 ©1990 Adobe Systems Incorporated. All rights reserved.

a full specification of the PostScript page description language and the conventions for
structuring PostScript documents. The reader is assumed to be familiar with the terms used
in the Adobe Illustrator 88 User Guide.

2. DOCUMENT OVERVIEW

Adobe Illustrator uses a small, specialized language to describe the graphic elements of an
illustration. The special language is much simpler than the full PostScript language. In
particular, the language is purely declarative in that there are no control constructs for
performing iterative or conditional computations. Each of the operators in the language can
be emulated by a PostScript procedure. An Adobe Illustrator document contains both the
PostScript language definitions for the operators that constitute the special illustration
language and the illustration itself, which is described in the illustration language. The
definitions and illustration are stored as a structured PostScript document description.

A PostScript document description that obeys the Document Structuring Conventions has
two main parts: A prologue and a script. The script has three parts: a setup sequence, a
sequence of page descriptions, and a trailer. A conforming document is one that obeys a
proper subset of the structuring conventions. Specifically there must not be any PostScript
code executed in the prologue and no definitions made in the script. Adobe Illustrator
creates conforming structured PostScript files.

The prologue part of a document encapsulates information needed both by other programs
that need to interpret the file and PostScript language definitions of procedures and
variables that are used in the individual page descriptions. For Adobe Illustrator, the
prologue defines the collection of PostScript procedures that implement the operators of the
special illustration language. The main body of the document is a script which describes
the illustration using the illustration language.

The document structuring information is embedded in a PostScript program using stylized
comments. Apart from the first comment in a file, the structuring comments all have the
form:

%%Keyword{: arguments}

Many structuring comments require information in addition to the keyword. This
information is separated from the keyword by a colon and continues to the newline
character that terminates the comment.

The syntax for describing the Adobe Illustrator document format here is described using a
common notation, known as BNF (Backus-Naur Form):

<xyz> ::= abc <def> ghi |
 <k> j

A token enclosed in angle brackets names a class of document component, while plain text
appears verbatim or with some obvious substitution. The grammar rules have two parts. On
the left of the “::=” definition symbol is the name of a class of components. In the example
above, the class is named xyz. On the right of the definition symbol is a set of one or more
alternative forms that an xyz component might be take in the document. The alternative
forms are separated by the vertical bar character (|). Each line on the right hand side of the

©1990 Adobe Systems Incorporated. All rights reserved. 5

rule corresponds to one line in the document. If the only content of a line on the right hand
side is another class name, then the line may represent more than one line in the document.
Most of this will become clear as the individual document components are described.
Single letter components, such as “<A>”, refer to the corresponding illustration language
operator A. The notation “{ ... }” means that the items enclosed in curly brackets are
optional. If the curly brackets are followed by an asterisk (*), the objects inside the brackets
may be repeated zero or more times.

Using the notation described above, the overall structure of an Adobe Illustrator document
is:

<document> ::= <prologue>
<script>

<script> ::= <setup>
<script body>
<trailer>

The full document syntax structure is summarized in Section 7.

The syntax and semantics of the individual operators of the illustration language are
defined in later sections of this document. Each operator definition looks like the following:

operand1... operandm op

The functionality of the op operator is described in here.

This notation means that the operator op takes m operands and performs some operation.
Each operand is characterized either by its data type (e.g., integer) or a more meaningful
name (e.g., linewidth). In the latter case, the range of legitimate values is given in the
description. A dash (–) is used to indicate that an operator requires no operands.

There are several versions of Adobe Illustrator available: Adobe Illustrator, Adobe
Illustrator — Windows Version, Adobe Illustrator 88, and Adobe Illustrator Japanese
Edition. Differences in the document formats among the various versions will be indicated
in the descriptions of the individual components of the document. Parts of the document or
individual operators that are used exclusively by Adobe Illustrator 88 are marked by
“ [AI88] .” Where distinction between Adobe Illustrator 88 and other versions of Adobe
Illustrator are mentioned in this document, Adobe Illustrator Japanese Edition is considered
equivalent to Adobe Illustrator 88 unless specifically noted otherwise.

Sections 3 to 7 describe the format of document files written by Adobe Illustrator. Section
8 describes how standard information can be removed from documents written by Adobe
Illustrator to minimize their size for transmission and storage. Section 9 illustrates how
minimal documents may be created for later editing with Adobe Illustrator. Section 10
describes the contents of the resource fork that is part of an Adobe Illustrator document on
the Macintosh®.

6 ©1990 Adobe Systems Incorporated. All rights reserved.

3. PROLOGUE

The syntax for an Adobe Illustrator document prologue is:

<prologue> ::= %!PS-Adobe-2.0 EPSF-1.2
<prologue body>
%%EndProlog

%!PS-Adobe-2.0 EPSF-1.2

The first line of the file declares with the “%!” comment prefix that the file contains a
PostScript program. It then specifies that the file conforms to version 2.0 of the
Document Structuring Conventions and further that the file conforms to version 1.2 of
the conventions for Encapsulated PostScript Files. Both of the version numbers must
correspond to the specification used for constructing the document.

%%EndProlog

The %%EndProlog comment marks the end of the entire document prologue.

The prologue body contains some header information and the definitions of any PostScript
procedures used in the document. The syntax for the prologue body is:

<prologue body> ::= <header>
<proc sets>

3.1 Header

The header for the prologue of an Adobe Illustrator document follows the “%! ” comment
on the first line of the file. The syntax for the prologue header is:

<header> ::= <header comments>
%%EndComments

%%EndComments

The %%EndComments comment marks the end of the header part of the prologue.

The sequence of header comments is a subset of the list below. The syntax for the
individual comments is described informally. Almost all of the header comments are
optional. The comments required by Adobe Illustrator in all documents are marked
“ [Required].” Some comments are required only if a specific feature is used in an
illustration. These comments are marked “[As Necessary].”

Some of the comments used in the header are not defined in the official
 Document
Structuring Conventions, but are useful to applications which need to handle Adobe
Illustrator documents. These comments are identified explicitly.

©1990 Adobe Systems Incorporated. All rights reserved. 7

%%Creator: Adobe Illustrator 88(TM) version
%%For: (username) (organization)
%%Title: (Illustration title)
%%CreationDate: (date) (time)
%%DocumentProcSets: Adobe_packedarray level revision
%%DocumentSuppliedProcSets: Adobe_packedarray level revision
%%DocumentProcSets: Adobe_cmykcolor level revision
%%DocumentSuppliedProcSets: Adobe_cmykcolor level revision
%%DocumentProcSets: Adobe_cshow level revision
%%DocumentSuppliedProcSets: Adobe_cshow level revision
%%DocumentProcSets: Adobe_customcolor level revision
%%DocumentSuppliedProcSets: Adobe_customcolor level revision
%%DocumentProcSets: Adobe_pattern level revision
%%DocumentSuppliedProcSets: Adobe_pattern level revision
%%DocumentProcSets: Adobe_Illustrator88version level revision
%%DocumentSuppliedProcSets: Adobe_Illustrator88version level revision
%%DocumentFonts: font ...
%%+font ...
%%DocumentFiles: filename ...
%%+filename ...
%%ColorUsage: keyword
%%DocumentProcessColors: keyword ...
%%DocumentCustomColors: (customcolorname)
%%+ (customcolorname) ...
%%CMYKCustomColor: cyan magenta yellow black (customcolorname)
%%+ cyan magenta yellow black (customcolorname)
%%BoundingBox:llx lly urx ury
%%TemplateBox:llx lly urx ury
%%TileBox:llx lly urx ury

The individual lines in the header are specified as follows:

%%Creator: Adobe Illustrator 88(TM) version

The %%Creator comment identifies the application that generated the PostScript
document. The version number is arbitrary text terminated by a newline character.

%%For: (username) (organization)

The %%For comment identifies the user who created the file and the organization to
which the user belongs. Both the username and organization are valid PostScript
language strings. The PostScript language string escape sequences for including
characters outside the printable ASCII character set and for representing the “(”, “)”, and
other special characters in strings are discussed in Section 3.3 of the PostScript
Language Reference Manual.

%%Title: (Illustration title)

The %%Title comment provides an arbitrary text title for the document. The title is a
valid PostScript language string as above.

%%CreationDate: (date) (time)

The %%CreationDate comment gives the date and time that the document was
created. The date and time are each valid PostScript language strings as above.

8 ©1990 Adobe Systems Incorporated. All rights reserved.

%%DocumentProcSets: Adobe_Illustrator88 level revision

The %%DocumentProcSets comment specifies that a procedure set named
Adobe_Illustrator88 is required by the illustration and specifically that the version
identified by level and revision of that procedure set is required. The level and revision
are arbitrary text delimited by whitespace.

%%DocumentSuppliedProcSets: Adobe_Illustrator88 level revision

The %%DocumentSuppliedProcSets comment specifies that the procedure set named
Adobe_Illustrator88 is defined later in the prologue (see following section).

Note: Adobe Illustrator uses two versions of its main procedure set. The
procedure set named Adobe_Illustrator88 is the full version. However, if no
patterns are used in an Adobe Illustrator 88 document, the
Adobe_Illustrator881 procedure set is used instead, saving over 4K bytes in the
size of the document file. (See Section 8, Compressing Illustrator Documents.)

%%DocumentProcSets: Adobe_packedarray level revision
%%DocumentSuppliedProcSets: Adobe_packedarray level revision
%%DocumentProcSets: Adobe_cmykcolor level revision
%%DocumentSuppliedProcSets: Adobe_cmykcolor level revision
%%DocumentProcSets: Adobe_cshow level revision
%%DocumentSuppliedProcSets: Adobe_cshow level revision
%%DocumentProcSets: Adobe_customcolor level revision
%%DocumentSuppliedProcSets: Adobe_customcolor level revision
%%DocumentProcSets: Adobe_pattern level revision
%%DocumentSuppliedProcSets: Adobe_pattern level revision

These comments indicate that the named procedure sets are both required and defined
by the document (see following section). Comments appear only for the actual
procedure sets needed by the illustration. (See Section 8, Compressing Illustrator
Documents.) [AI88]

%%DocumentFonts: font ...
%%+font ...

The %%DocumentFonts comment enumerates the names of PostScript fonts that are
used in the document. The %%+ comment indicates a continuation of the list of
keywords from the previous comment. In this case it extends the list of fonts used in the
document. This list includes fonts which are listed in the %%DocumentFonts
comment in any files which are included (placed) within an Adobe Illustrator 88
document (see section 5.8). The fonts may need to be downloaded to the PostScript
printer before the document description can be executed. This comment should be
omitted if no fonts are used in the document.

%%DocumentFiles: filename ...
%%+filename ...

The %%DocumentFiles comment names files that need to be imported to complete the
illustration. The site at which the file is needed is marked by another comment,
%%IncludeFile . See the Section 5.8, Imported Document Operators below. This
comment should be omitted if no files are imported into the document. [AI88]

©1990 Adobe Systems Incorporated. All rights reserved. 9

%%ColorUsage: keyword

The %%ColorUsage comment indicates whether the document uses only
black or colored ink, indicated by the keywords Black&White and Color,
respectively. This is not an official structuring comment. [AI88]

%%DocumentProcessColors: keyword ...

The %%DocumentProcessColors comment specifies which of the process colors
identified by the keywords Cyan, Magenta, Yellow, and Black are used in the
document. This comment is used by programs producing color separations. [AI88]

%%DocumentCustomColors: (customcolorname)
%%+ (customcolorname)

The %%DocumentCustomColors comment enumerates the names of the custom
colors used in the document. The names are valid PostScript strings which are enclosed
in parentheses. For example the PANTONE® colors are identified by names such as:
“ (PANTONE 156 CV)”. The list of custom color names may be continued on subsequent
lines, each of which must begin with the “%%+ ” prefix. [AI88 , As Necessary]

%%CMYKCustomColor: cyan magenta yellow black (customcolorname)
%%+ cyan magenta yellow black (customcolorname)

The %%CMYKCustomColor comment specifies an approximation for the named
custom color in terms of the four components: cyan, magenta, yellow, and black. Each
component value must be a real value in the range [0.0,1.0]. The component values are
analogous to the arguments to the PostScript setcmykcolor operator. [AI88 , As
Necessary]

%%BoundingBox:llx lly urx ury

The %%BoundingBox comment specifies the imaginary box that encloses all of the
marks painted on the page for the illustration. The integer coordinates are specified in
the default user coordinate system. Some versions of Adobe Illustrator incorrectly used
real numbers instead of integers for the bounding box. The width (urx - llx) and height
(ury - lly) of the bounding box must be integers. [Required]

%%TemplateBox:llx lly urx ury

The %%TemplateBox comment specifies the imaginary box that encloses all of the
samples in the document’s template (see Adobe Illustrator 88 User Guide). The integer
(or real) coordinates are specified in the default user coordinate system. Each sample in
the template is assumed to be 1/72 inch square. The width (urx - llx) and height (ury -
lly) of the template box must be integers. If the document has no template, then the width
and height of the template bounding box must be zero. This is not an official structuring
comment. [Required]

When Adobe Illustrator opens a document, the illustration is placed on the drawing area
in such a way that the coordinate (llx + urx)/2, (lly + ury)/2) is centered in the drawing
area.

10 ©1990 Adobe Systems Incorporated. All rights reserved.

%%TileBox:llx lly urx ury

The %%TileBox comment specifies the bounding box of the main tile of the drawing
area (see Adobe Illustrator 88 User Guide). The initial ruler position is centered in this
box. This is not an official structuring comment.

The subset of the Adobe Illustrator 88 header described above used by Adobe Illustrator
and Adobe Illustrator — Windows Version has the following form:

%%Creator:Adobe Illustrator(TM) version
%%For:username organization
%%Title:document-title
%%CreationDate:date time
%%DocumentProcSets:Adobe_Illustrator_version level revision
%%DocumentSuppliedProcSets:Adobe_Illustrator_version level revision
%%DocumentFonts: font ...
%%+font ...
%%BoundingBox:llx lly urx ury
%%TemplateBox:llx lly urx ury

The principal difference for the comments that convey arbitrary text information is in how
the strings of characters are delimited. In Adobe Illustrator 88 documents, the individual
strings are valid PostScript language strings, while in other versions the last text item in a
comment is just terminated by a newline character.

The following additional comments are needed by Adobe Illustrator — Windows Version
to provide the information that is stored in the Macintosh resource fork by the Macintosh
versions of Adobe Illustrator (see Section 9, Macintosh Resources):

%%Template:{filename}
%%PageOrigin:x y
%%PrinterName:{printer brand name}
%%PrinterRect:llx lly urx ury

%%Template:{filename}

The %%Template comment specifies the full pathname of the template for the
illustration. If no name is given, no template file is used (see Section 10.2, TEMP
Resource). If this comment is omitted, Adobe Illustrator — Windows Version will put
up the template dialogue box to request the name of a template file. This is not an official
structuring comment.

%%PageOrigin:x y

The %%PageOrigin comment specifies the coordinates of the document’s page origin
(in points) as specified by the Page tool (see Section 10.3, PAGE Resource). If this
comment is omitted, the page origin will be set to the ruler origin. This is not an official
structuring comment.

%%PrinterName:{printer brand name}

The %%PrinterName comment specifies the brand name of a printer (e.g. “Apple
LaserWriter.”) This is not an official structuring comment.

©1990 Adobe Systems Incorporated. All rights reserved. 11

%%PrinterRect:llx lly urx ury

The %%PrinterRect comment specifies the bounding box of the image area of the
printer identified in the %%PrinterName comment. The coordinate system used in this
comment is 4th quadrant as opposed to the 1st quadrant system used in all other
structuring comments. This means that lly and ury are measured from the top of the page
instead of the bottom of the page. (Microsoft Windows® uses the 4th quadrant system
and its use for this comment was a technical oversight.) This comment provides
information for the page setup on the specified printer. If this comment is omitted, the
default is set for letter size, portrait orientation on the Apple LaserWriter®. This is not
an official structuring comment.

3.2 Procedure Sets
The syntax for procedure set definitions is:

<proc sets> ::= {<proc set def>}*

<proc set def> ::= %%BeginProcSet:proc_set_name level revision
userdict /proc_set_name size dict dup begin put
/initialize {
 ...
 } def
 /terminate {
 ...
 } def
 <other PostScript definitions>
currentdict readonly pop end

 %%EndProcSet

Each procedure set is defined in its own dictionary using straightforward PostScript code.
The dictionary is created on the first line of the definition. The dictionary must be created
large enough to hold the subsequent procedure definitions. After the dictionary is created
it is pushed onto the PostScript dictionary stack and becomes the first dictionary used by
the PostScript interpreter for new definitions. Following the individual definitions for the
procedure set, the dictionary is made read-only and then it is popped off the PostScript
dictionary stack.

Each Adobe Illustrator procedure set has at least two well-known procedures defined:
initialize and terminate. The initialize procedure is invoked by the setup section of the
document script (Section 4) and the terminate procedure is invoked by the trailer section of
the script (Section 6). [AI88]

12 ©1990 Adobe Systems Incorporated. All rights reserved.

4. SCRIPT SETUP

The syntax for the script setup section for an Adobe Illustrator 88 document is:

<setup> ::= %%BeginSetup
<proc sets init>

<pattern defs>
%%EndSetup

The following sections describe the individual components of the setup section of the
document.

For the other versions of Adobe Illustrator, the setup section of the script pushes the main
procedure dictionary onto the dictionary stack for the PostScript interpreter and may re-
encode a font for use in the document. The syntax is:

<setup> ::= %%BeginSetup
Adobe_Illustrator_version begin

%%EndSetup

4.1 Procedure Set Initialization

For each of the procedure sets used in an Adobe Illustrator 88 document, the setup section
of the document executes the initialize procedure that is defined by convention in each of
the procedure sets used in the document. The syntax is:

<proc sets init> ::= {<initialize>}*

<initialize> ::= proc_set_name /initialize get exec

The initialization instructions are straightforward PostScript code. The PostScript
dictionary object that contains the definitions for a procedure set is specified first. The
/initialize token is the name of a procedure stored in the dictionary. The get operator obtains
the named procedure object from the dictionary and pushes it onto the PostScript operand
stack. Finally, the exec operator executes the procedure that is on the top of the stack,
pushed there by the preceding get operator.

The typical collection of procedure sets initialized in an Adobe Illustrator 88 document is:

Adobe_cmykcolor /initialize get exec
Adobe_cshow /initialize get exec
Adobe_customcolor /initialize get exec
Adobe_pattern /initialize get exec
Adobe_Illustrator88 /initialize get exec

In the script trailer part of the document, the complementary terminate procedure is
executed for each of the procedure sets.

©1990 Adobe Systems Incorporated. All rights reserved. 13

4.2 Font Re-encoding

In the Macintosh environment, the mapping between ASCII characters and glyphs in a font
is different from the standard mapping used in a PostScript font. Therefore to print a
document correctly, the mapping must be changed for each PostScript font used in an
Adobe Illustrator document. The action of altering the mapping between character codes
and glyphs is called re-encoding the font.

The syntax for re-encoding fonts in an Adobe Illustrator document is:

 ::= {<re-encoding>}*

<re-encoding> ::= %%BeginEncoding:newfontname oldfontname
 <Z>

%%EndEncoding

The %%BeginEncoding and %%EndEncoding comments are not official structuring
comments.

The re-encoding is performed by the Z operator, which is defined as follows for Adobe
Illustrator 88:

[newencoding] /newfontname /oldfontname direction Z
The Z operator creates a new font from an existing font by changing portions of the new
font’s encoding vector. The newencoding operand is an array of encoding numbers and
literal glyph names organized as follows:

[code1 /name11 /name12 ... /name1j

 code2 /name21 /name22 ... /name2k

...
coden /namen1 /namen2 ... /namenl]

where each code is in the range [0,255] and each name is the literal glyph name. The
“/” preceding each name is the syntax used to distinguish a PostScript literal name from
an executable name. This array describes a set of sequences of glyph names to install in
the new encoding vector. Each sequence begins with the character index of the first
name to be replaced. Subsequent names are replaced up to the next character index entry
in the newencoding array at which point a new sequence of replacement names begins,
starting with the one at the new character index.

The newfontname and oldfontname operands are the PostScript names for the new font and
the original font. These names must be the same as the names given in the
%%BeginEncoding comment. The direction operand is zero. For the other versions of
Adobe Illustrator besides the Japanese Edition and Adobe Illustrator 88, there is no
direction operand.

14 ©1990 Adobe Systems Incorporated. All rights reserved.

In the following example of how the Z operator is used, a new font named _Times-Roman
is derived from the original Times-Roman font. Three sequences of characters within the
encoding vector are replaced. The first one-character sequence to be replaced is number 39,
the second one-character sequence is number 96, and the third subsequence of the array
replaces the characters numbered 128 and above.

%%BeginEncoding:_Times-Roman Times-Roman
[
39/quotesingle 96/grave
 128/Adieresis/Aring/Ccedilla/Eacute/Ntilde/Odieresis
/Udieresis/aacute/agrave/acircumflex/adieresis/atilde/aring/ccedilla/eacute
/egrave/ecircumflex/edieresis/iacute/igrave/icircumflex/idieresis/ntilde
/oacute/ograve/ocircumflex/odieresis/otilde/uacute/ugrave/ucircumflex
/udieresis/dagger/.notdef/cent/sterling/section/bullet/paragraph/germandbls
/registered/copyright/trademark/acute/dieresis/.notdef/AE/Oslash
/.notdef/.notdef/.notdef/.notdef/yen/.notdef/.notdef/.notdef
/.notdef/.notdef/.notdef/ordfeminine/ordmasculine/.notdef/ae/oslash
/questiondown/exclamdown/logicalnot/.notdef/florin/.notdef/.notdef
/guillemotleft/guillemotright/ellipsis/.notdef/Agrave/Atilde/Otilde/OE/oe
/endash/emdash/quotedblleft/quotedblright/quoteleft/quoteright/.notdef
/.notdef/ydieresis/Ydieresis/fraction/currency/guilsinglleft/guilsinglright
/fi/fl/daggerdbl/periodcentered/quotesinglbase/quotedblbase/perthousand
/Acircumflex/Ecircumflex/Aacute/Edieresis/Egrave/Iacute/Icircumflex
/Idieresis/Igrave/Oacute/Ocircumflex/.notdef/Ograve/Uacute/Ucircumflex
/Ugrave/dotlessi/circumflex/tilde/macron/breve/dotaccent/ring/cedilla
/hungarumlaut/ogonek/caron
]/_Times-Roman/Times-Roman 0 Z
%%EndEncoding

In Adobe Illustrator Japanese Edition, the Z operator is as follows:

[newencoding]/newfontname/oldfontname direction fontscript Z
All operands are as before except the direction operand is 0 for horizontal writing and 1
for vertical writing. The fontscript operand is 0 for Roman typefaces and 1 for Kanji
typefaces. Note that for composite fonts (such as Kanji fonts), the [newencoding] array
should be an empty array.

4.3 Pattern Definition [AI88]

Patterns used by Adobe Illustrator are defined in the script setup section of the document.
A pattern is essentially just another Adobe Illustrator illustration which can be drawn
repeatedly. Therefore parts of the description of how patterns are defined must necessarily
refer forwards in the document to the description of how an illustration is described in the
document script section.

Each pattern is defined by a rectangle which is used to tile the drawing area. The illustration
within the rectangle when the pattern is defined constitutes the pattern to be used when a
path is filled or stroked with the pattern.

The syntax for a pattern is:

<pattern defs> ::= {<pattern>}*

<pattern> ::= %%BeginPattern: (patternname)
<E>
%%EndPattern

©1990 Adobe Systems Incorporated. All rights reserved. 15

The %%BeginPattern and %%EndPattern comments are not official Document
Structuring Convention comments.

The pattern definition operator, E, is defined as follows:

(patternname) llx lly urx ury [<layer list>] E
The E operator defines a new pattern called patternname using the layer list for which
the bounding box is specified by (llx, lly) and (urx, ury).

Section 5 describes how a general illustration is composed of layers, each of which is drawn
on top of lower layers which appear earlier in the sequence of layers. Because a pattern is
really just a mini-illustration, it too is composed of layers. The syntax for the list of layers
in a pattern is:

<layer list> ::= {<layer>}*

<layer> ::= <@>
<&>

Each layer of the pattern is defined in two parts. The first part defines the color to be used
for filling and stroking the pattern. The second part defines the other style parameters and
the paths for drawing the pattern.

(colordefinition) @
The @ operator defines the color and overprinting style to be used for the associated
layer in the pattern. The colordefinition parameter begins with a specification of the
overprinting option (see the definition of the operators O and R in Section 5.3). The
filling/stroking color is then defined using the simple gray operators (g/G), the process
color operators (k/K), or the custom color operators (x/X). All of the color operators are
defined in Section 5.3.

(tiledefinition) &
The & operator defines the tile for the pattern layer which includes the drawing styles
and the illustration components for the layer. This is identical to the representation of
objects in the document script except that the color components are specified separately
and both parts of the object are specified separately as PostScript strings, which are
enclosed in parentheses. The use of strings also limits the size of a pattern layer
definition to 64K bytes.

If the pattern background is filled and/or stroked, the first layer of the pattern defines the
background for the tile. If the pattern tile rectangle is filled, then the special “_” operator is
first used to specify a fill of the tile rectangle. If the pattern tile rectangle is stroked, then
normal path construction of the rectangle is used to specify the pattern tile to stroke. By
breaking down the filling and stroking of the pattern tile in this manner, a performance
optimization is performed when imaging. See below for an example of both filling and
stroking the background pattern tile rectangle.

– _
The _ operator is used to signal to the pattern machinery that the tile rectangle for the
path is to be filled with the fill color previously specified to the @ operator.

16 ©1990 Adobe Systems Incorporated. All rights reserved.

An example pattern definition is:

%BeginPattern: (no vegetation)
(no vegetation) 105 561.875 138 594.875 [
(0 O 0 R 0.03 0.05 0.15 0 (PANTONE 468 CV) 0 x 0.03 0.05 0.15 0 (PANTONE 468 CV) 0 X) @
_ &
(0 O 0 R 0.125 0.25 0.525 0 (PANTONE 465 CV) 0 x 0.125 0.25 0.525 0 (PANTONE 465 CV) 0 X) @
(
0 i 0 J 0 j 1 w 4 M []0 d
%%Note:
105 561.875 m
105 594.875 L
138 594.875 L
138 561.875 L
105 561.875 L
s
) &
(0 O 0 R 0 0.15 0.4 0 (PANTONE 156 CV) 0 x 0 0.15 0.4 0 (PANTONE 156 CV) 0 X) @
(
0 i 0 J 0 j 0.3 w 4 M []0 d
%%Note:
105 599 m
105 560 l
S
108 599 m
108 560 l
S
...
138 599 m
138 560 l
S
) &
] E
%%EndPattern

The example above defines a pattern called “no vegetation.” This example has the pattern
tile filled and stroked. First is the pattern name, the bounding box for the pattern tile, then
the layer list. The first item in the layer list specifies the custom color
“PANTONE 468CV” as the fill color of the pattern tile. The “_” operator specifies a fill of
the pattern tile. The next layer in the pattern specifies a stroke of the pattern tile. The custom
color “PANTONE465 CV” is the stoke color. Following the color specification is
 the
drawing of the pattern tile itself. See Section 5.4 for a description of the style options
selected at the beginning of the tile definition. Each path in the tile layer is then specified
with a sequence of m (moveto) and l (lineto) operations. Each path in the layer is stroked
by the S operator (Section 5.6). Once the pattern tile is drawn and stroked, the elements of
the pattern follow. In this example, they are vertical lines which are all stroked with the
same color.

©1990 Adobe Systems Incorporated. All rights reserved. 17

5. SCRIPT BODY

An illustration is composed of a sequence of graphic elements. The PostScript imaging
model is based on opaque ink so that elements later in the sequence are effectively “on top
of” objects earlier in the sequence and so may obscure the earlier elements. The syntax for
the sequence of elements is:

<element seq> ::= {<element> | <import doc>}*

<element> ::= {<A>}
<group> | <object>

 <group> ::= <u>
<object seq>
<U> |
<q>
<object seq>
<Q>

<object seq> ::= {<element>}*

<object> ::= <color>
<graphics state>
{%%Note: arbitrary text}
<graphic> | <text>

<graphic> ::= <path>
<paint operator>

The following sections describe the individual operators for describing graphic objects.
Each section describes the operators for one of the object components shown in the syntax
above.

5.1 Locked Object Operator [AI88]

flag A
The A operator specifies whether the object defined immediately after this operator can
be selected when editing the document with Adobe Illustrator. The flag operand may be
either 0 or 1. If flag is 1, the object is "locked" and may not be selected. If flag is 0, the
object may be selected.

5.2 Group Operators

Several operators are provided to support Adobe Illustrator’s ability to combine a number
of graphic elements into a single composite object.

– u
The u operator marks the beginning of a sequence of elements to be grouped into a
composite object. All subsequent graphical elements in the script, including other
groups, up to a matching U operator are included in the group.

– U
The U operator marks the end of a sequence of elements to be grouped into a composite
object. The U operator must be matched by a preceding u operator.

18 ©1990 Adobe Systems Incorporated. All rights reserved.

– q
The q operator is similar to the u operator, except that the first object in the group
specifies a mask (clip path) which specifies a boundary for subsequent objects in the
group so that only objects within the boundary are visible when the illustration is drawn.
[AI88]

– Q
The Q operator is similar to the U operator, except that it marks the end of a sequence
of elements containing a mask. [AI88]

5.3 Color Operators

gray g
The g operator specifies the gray tint to use for filling paths. The gray operand must be
a number between 0.0 (black) and 1.0 (white).

gray G
The G operator is similar to the g operator, but specifies the gray color to use for stroking
paths.

cyan magenta yellow black k
The k operator is equivalent to the PostScript setcmykcolor operator, which specifies
the process color to use for filling paths. Each operand must be a number between 0.0
(minimum intensity) and 1.0 (maximum intensity). If the setcmykcolor operator is not
defined by the PostScript interpreter, the Adobe Illustrator prologue defines it in terms
of the original setrgbcolor operator by transforming the operands as follows:

red = 1 - min(1, cyan + black)
green = 1 - min(1, magenta + black)
blue = 1 - min(1, yellow + black)

If the output device is monochrome, the NTSC conversion from the red-green-blue color
model is used to render the color as a shade of gray. The equivalent parameter to the
g/G operators is:

gray = 0.3 * red + 0.59 * green + 0.11 * blue.

The conversion from red, green and blue to gray is performed automatically by the
PostScript interpreter for a monochrome output device.

cyan magenta yellow black K
The K operator is similar to the k operator, but specifies the color to use for stroking
paths.

cyan magenta yellow black (name) gray x
The x operator defines a custom color to be used for filling paths. The cyan, magenta,
yellow, and black operands are interpreted the same as for the k/K operators. The gray
operand is treated the same as for the g/G operators and specifies the screen fraction of
the custom color (in the range [0.0, 1.0]). The name operand is an valid PostScript string
that is used to name the custom color. [AI88]

©1990 Adobe Systems Incorporated. All rights reserved. 19

For example:

0.45 0 0.25 0 (PANTONE 570 CV) 0 x

cyan magenta yellow black (name) gray X
The X operator is similar to the x operator, but specifies the custom color to use for
stroking paths. [AI88]

(patternname) px py sx sy angle rf r k ka [a b c d tx ty] p

The p operator specifies the pattern to be used for subsequent fill operations. The first
operand names the pattern as defined in the script setup sequence (see Section 4.3). The
remaining operands specify the transformations (in order) to be applied to the pattern
before it is used to fill a path. The (px, py) pair specifies the offset from the ruler origin

of the origin to be used for tiling the pattern. Each distance is specified in points. The sx
and sy operands specify the scale factors to be applied to the x and y dimensions,

respectively, of the pattern. The angle operand specifies the angle in counterclockwise
degrees that the pattern is to be rotated. The rf operand is a flag which indicates whether
to apply a reflection to the pattern. The r operand specifies the angle of the line from the
origin about which the pattern is to be reflected if the rf operand is non-zero. The k
operand specifies the shear angle. The ka operand specifies the angle of the shear axis if
k is non-zero. The matrix operand specifies the initial matrix to which all of the other
pattern transformations are to be applied. This matrix describes transformations that are
not otherwise expressible as the single combination of the other transformations. (See
the description of the Transform Pattern Style sub-menu of the Paint menu in the Adobe
Illustrator 88 User Guide.) [AI88]

(patternname) px py sx sy angle rf r k ka [a b c d tx ty] P

The P operator is similar to the p operator, but specifies the stroke pattern. [AI88]

flag O
The O operator specifies whether overprinting will be used when a path is filled. If flag
is 1, overprinting will be used, otherwise flag must be zero. See Adobe Illustrator 88
Color Guide (part of the Adobe Illustrator 88 package) for a discussion of overprinting
in Adobe Illustrator 88 documents. [AI88]

flag R
The R operator is similar to the O operator, but specifies whether overprinting will be
used when a path is stroked. [AI88]

5.4 Graphics State Operators

The components of the graphics state for a PostScript language interpreter are defined in
section 4.3 of the PostScript Language Reference Manual. For Adobe Illustrator some of
the graphics state components may be set by the following operators:

[array] phase d
The d operator is equivalent to the PostScript setdash operator, which sets the dash
pattern parameter in the graphics state, controlling the dash pattern used when paths are
subsequently stroked. The array of values specifies distances in user space along the
path for the length of dashes and gaps, respectively, in the pattern. The phase operand
determines the phase of the dash pattern with respect to the start of the path. It is

20 ©1990 Adobe Systems Incorporated. All rights reserved.

specified as a distance in user space into the pattern at which to begin the marking of the
path. Note that Adobe Illustrator does not provide an interface for users to adjust this
phase parameter. Adobe Illustrator will preserve this phase for documents which the
user edits and then saves. The initial dash pattern is a solid line.

flatness i
The i operator is equivalent to the PostScript setflat operator, which sets the flatness
parameter in the graphics state. The flatness parameter specifies the accuracy or
smoothness with which curves are rendered as a sequence of straight line segments.
Specifically, it sets the maximum distance in device pixels that is permitted between the
mathematical path and a given straight line segment. The default value for the flatness
parameter is 1.0. If flatness is specified as 0, the flatness is set to the flatness parameter
in effect when the Adobe Illustrator prologue was executed.

linejoin j
The j operator is equivalent to the PostScript setlinejoin operator, which sets the current
line join parameter in the graphics state to linejoin. This parameter specifies the shape
to put at corners in paths when they are stroked. The linejoin parameter may be 0 for
mitered joins, 1 for round joins, and 2 for beveled joins. The initial line join is 0 for
mitered joins.

linecap J
The J operator is equivalent to the PostScript setlinecap operator, which sets the current
line cap parameter in the graphics state to linecap. If linecap is 0, butt end caps are used
and the end of a line is squared off. If linecap is 1, round end caps are used. If linecap is
2, projecting square end caps are used. The projection extends beyond the end of the line
by a distance which is half the line width. The initial line cap is 0 for square butt ends.

miterlimit M
The M operator is equivalent to the PostScript setmiterlimit operator, which sets the
miter limit parameter in the graphics state to miterlimit. The operand must be a number
greater than 1. When mitered line joins have been specified and two line segments meet
at a sharp angle, it is possible for the miter to extend far beyond the thickness of the line
stroking the path. The miter limit imposes a limit on the ratio of the length of the miter
to the line width. When the limit is exceeded, a bevel join is used instead of a miter. The
initial miter limit is 10.

linewidth w
The w operator is equivalent to the PostScript setlinewidth operator, which sets the line
width parameter in the graphics state to linewidth. This parameter controls the thickness
of the line used to stroke a path and is specified as a distance in user space. The initial
line width is 1.0.

5.5 Path Construction Operators

Drawing in the PostScript language is accomplished by constructing a path and then filling
or stroking it. This section defines the path construction operators. Only one path (the
current path) may be constructed at a time. The current path is initially empty and is reset
to empty by the painting operators. A path is constructed by appending segments which are
either straight lines or Bézier curves. The last point on a segment is termed the current point
and new segments are appended to the current point. The first operator on a path must be
m to establish an initial current point.

©1990 Adobe Systems Incorporated. All rights reserved. 21

As each new segment is appended to the path, the new current point is marked as either a
smooth point or a corner point. If the point is marked smooth, then the point and the two
associated Bézier direction points of the segments connected by the point are assumed to
be collinear. If the point is marked as a corner point, no constraint is assumed. A straight
line segment may be thought of as a degenerate Bézier curve in which the direction points
are coincident with the end points.

The syntax for a path, which requires an m operator as its first component, is:

< path> ::= <m>
{<path operator>}*

The path operators are defined as follows:

x y m
The m operator is equivalent to the PostScript moveto operator. It changes the current
point to (x, y) omitting the connecting line segment.

x y l
The l operator appends a straight line segment from the current point to (x, y). The new
current point is a smooth point.

x y L
The L operator is similar to the l operator, but the new current point is a corner.

x1 y1 x2 y2 x3 y3 c

The c operator appends a Bézier curve to the path from the current point to (x3,y3) using

(x1,y1) and (x2,y2) as the Bézier direction points. The new current point is a smooth

point.

x1 y1 x2 y2 x3 y3 C

The C operator is similar to the c operator, but the new current point is a corner.

x2 y2 x3 y3 v

The v operator adds a Bézier curve segment to the current path between the current point
and the point (x3, y3), using the current point and then (x2, y2) as the Bézier direction

points. The new current point is a smooth point.

x2 y2 x3 y3 V

The V operator is similar to the v operator, except that the new current point is a corner.

x1 y1 x3 y3 y

The y operator adds a Bézier curve segment to the current path between the current point
and the point (x3, y3), using (x1, y1) and then (x3, y3) as the Bézier direction points. The

new current point is (x3, y3) and it is a smooth point.

x1 y1 x3 y3 Y

The Y operator is similar to the y operator, except that the new current point is a corner.

22 ©1990 Adobe Systems Incorporated. All rights reserved.

5.6 Painting Operators

Each of the path painting operators consumes the current path and resets it to empty unless
otherwise stated in the operator descriptions below.

– N
The N operator neither fills nor strokes the current path (see the F/f and S/s operators).
Paths that are invisible in the final document may be used for templates, alignment
marks, and so on while using Adobe Illustrator to edit a document.

– n
The n operator is similar to the N operator, but first closes the current path by appending
a straight line segment to the current path from the current point to the beginning point
of the path.

– F
The F operator fills the area enclosed by the current path with the current filling color
or pattern. The inside of the current path is determined by the PostScript non-zero
winding rule. (See Section 4.6 of the PostScript Language Reference Manual.)

– f
The f operator is similar to the F operator, but first closes the current path by appending
a straight line segment to the current path from the current point to the beginning point
of the path.

– S
The S operator strokes the current path with a line using the current stroking color or
pattern. The line width is specified by the graphics state (see the
 w operator) and the line
is centered on the path with its sides parallel to the path. The joins between path
segments are specified by the line join parameter in the graphics state (see the j operator)
and the ends of the path segments or dash lines within a segment (see the d operator) are
specified by the end cap parameter of the graphics state (see the J operator).

– s
The s operator is similar to the S operator, but first closes the current path by appending
a straight line segment to the current path from the current point to the beginning point
of the path.

– B
The B operator is similar to the F operator, but does not reset the current path to empty.

– b
The b operator is similar to the f operator, but does not reset the current path to empty.

– H
The H operator neither fills nor strokes the current path, but does not consume the path.
This is effectively a no-op. [AI88]

– h
The h operator is similar to the H operator, but first closes the current path by appending
a straight line segment to the current path from the current point to the beginning point
of the path. [AI88]

©1990 Adobe Systems Incorporated. All rights reserved. 23

– W
The W operator intersects the current clip path in the graphics state with the current path
and sets a new, reduced clip path in the graphics state. No marks are made outside the
area enclosed by the current clip path by subsequent fill and stroke operations. This
operator is used to establish a mask. [AI88]

5.7 Text Operators

Adobe Illustrator text blocks are rendered in three steps. First the font is selected. Second
a new user space is defined by concatenating a matrix with the current transformation
matrix and then the individual lines of a text block are imaged. The syntax for a text block
is:

<text> ::= <z>
<a> | <e> | <I> | <o> | <r>
{<t>}*
<T>

The following operators are used to render text blocks:

/fontname size leading kerning align z
The z operator selects a new current font to be used in rendering subsequent text blocks.
The fontname operand is the name of the re-encoded PostScript font, such as
 _Times-
Roman (see Section 4.2). The size operand specifies the scaled size of the font in user
space units. Similarly, the non-negative leading operand specifies the vertical spacing
between successive lines of text (in user space units). The kerning operand specifies a
distance in user space to be added to the X width of each character, thereby modifying
the spacing between characters. This value is stored in the Adobe Illustrator graphics
state for use by the t operator, which is described below. The align parameter specifies
how successive lines of text are aligned with each other. An align value of 0 specifies
align left (flush left, ragged right text), a value of 1 specifies align center (ragged left and
ragged right), and a value of 2 specifies align right (flush right, ragged left text). For
Adobe Illustrator Japanese Edition, the align operand has additional values. An align
value of 3 specifies vertical text flush at top and ragged at bottom, an align value of 4
specifies vertically centered text, and an align value of 5 specifies vertical text flush at
bottom and ragged at top.

[a b c d tx ty] a

The a operator begins a text block in which individual characters are stroked with the
current stroking color after they have been filled with the current filling color. The
matrix operand is concatenated with the current transformation matrix to establish a new
user space (see Section 4.4 of the PostScript Language Reference Manual). This
transformation handles the arbitrary rotation and reflection of the text. The new user
space establishes the origin for the first line of text.

[a b c d tx ty] e

The e operator is similar to the a operator, except that individual characters are filled
with the current filling color.

24 ©1990 Adobe Systems Incorporated. All rights reserved.

[a b c d tx ty] I

The I operator is similar to the a operator, except that the outlines of the individual
characters are appended to the current path instead of being rendered directly (see
Section 5.5). [AI88]

[a b c d tx ty] o

The o operator is similar to the e operator, except that individual characters are neither
filled nor stroked.

[a b c d tx ty] r

The r operator is similar to the a operator except that the individual characters are
stroked with the current stroking color. The stroke line is centered on the character
outline with sides parallel to the outline path. The stroke is drawn using the current
graphics state parameters for the line width, line join, line cap, and dash pattern.

length (string) t
The t operator renders the string of characters on the output device. The starting point
for the string, (Sx, Sy), is defined for each of the alignment methods as follows:

Align left (0, 0)
Align center(-wx/2, -wy/2)

Align right(-wx, -wy)

where wx and wy are the sum of the individual character X widths and Y widths,
respectively. The kerning parameter is added to each X width before it is included in the
sum.

After the characters in string have been rendered, the user space origin is translated by
the current leading in the negative Y direction to establish the origin for the next line of
text.

Note:
The length operand is required only in Adobe Illustrator 88 documents. Other
versions of Adobe Illustrator documents must not have a length operand.

– T
The T operator ends a block of text and restores the user space to its state prior to
executing the preceding text block beginning operator (a, e, I , o, r).

The following example illustrates the use of the text operators:

/_Helvetica 12 10 0 2 z
[1 0 0 1 183 254]e
11 (Right align)t
T

In this example, a re-encoded version of the Helvetica font (_Helvetica) is selected at a size
of 12 points with 10 point leading and no additional X kerning. The text is right aligned as
specified by the e operator. The string is 11 characters long.

©1990 Adobe Systems Incorporated. All rights reserved. 25

5.8 Imported Document Operators [AI88]
The syntax for importing a document into an Adobe Illustrator 88 document is:

<import doc> ::= <‘>
%%IncludeFile:filename
<~>

The filename specified in the %%IncludeFile comment must be the same as that specified
for the ‘ operator (see below). The file importing operators are:

[a b c d tx ty] llx lly urx ury (filename) ‘

The ‘ operator specifies that the document stored in filename is to be imported into the
illustration. The filename string is the full pathname for the file in the operating system’s
filesystem. The matrix operand is concatenated with the current transformation matrix
to establish a new user space and an origin for the imported document (see Section 4.4
of the PostScript Language Reference Manual). The matrix handles any rotation and
reflection to be applied to the imported document. The bounding box from the imported
document is specified by the llx, lly, urx, ury operands. The bounding box is specified
by the %%BoundingBox comment in the imported document’s prologue. In addition
to establishing a new user space, the ‘ operator redefines the PostScript showpage
operator as a no-op and disables overprinting.

– ~
The ~ operator restores the user space in effect when the preceding ‘ operator was
executed and restores the previous definition of showpage. (The ‘ operator executes the
PostScript save operator to preserve the interpreter state before importing the document
and the ~ operator executes the restore operator to return the interpreter state to that
prior to executing the ‘ operator.)

Adobe Illustrator 88 modifies its %%DocumentFonts comment to include any fonts in the
%%DocumentFonts comment of documents placed (included) into Adobe Illustrator.

Included files can also be saved directly into an Adobe Illustrator 88 document. If that is
the case, then the %%IncludeFile comment described above is replaced by:

%%BeginDocument:filename
.... included file here
%%EndDocument

26 ©1990 Adobe Systems Incorporated. All rights reserved.

6. SCRIPT TRAILER

The syntax for the script trailer of an Adobe Illustrator 88 document is:

<trailer> ::= %%Trailer
{<terminate>}*

<terminate> ::= proc_set_name /terminate get exec

The procedure set termination is expressed in pure Postscript code. The PostScript
dictionary object that contains the procedure set is pushed onto the PostScript operand
stack. The /terminate token is the name of a procedure stored in the dictionary. The get
operator obtains the named procedure from the dictionary and pushes it onto the operand
stack. Finally, the exec operator executes the procedure that is on the top of the stack,
pushed there by the preceding get operator.

For each procedure set that was initialized in the script setup, the trailer invokes its
terminate procedure:

Adobe_Illustrator88 /terminate get exec
Adobe_pattern /terminate get exec
Adobe_customcolor /terminate get exec
Adobe_cshow /terminate get exec
Adobe_cmykcolor /terminate get exec

Note that the procedure sets are terminated in the opposite order from that used to initialize
them. For the other versions of Adobe Illustrator, the <terminate> is:

<terminate> ::= _E end

This trailer executes the procedure named _E from the Adobe_Illustrator_version procedure
set dictionary. The _E procedure is responsible for printing messages that describe any
error that may occur during the execution of the illustration document. The end operator
removes the Adobe_Illustrator_version dictionary from the stack of dictionaries in use by
the PostScript interpreter. This end matches the begin operator used in the setup section of
the document.

©1990 Adobe Systems Incorporated. All rights reserved. 27

7. DOCUMENT SYNTAX SUMMARY

<document> ::=<prologue>
<script>

<prologue> ::=%!PS-Adobe-2.0 EPSF-1.2
<prologue body>
%%EndProlog

<prologue body> ::= <header>
<procedure sets>

<header> ::= <header comments>
%%EndComments

<proc sets> ::= {<proc set def>}*

<proc set def> ::= %%BeginProcSet:name level revision
userdict /name size dict dup begin put
/initialize {
 ...
 } def
 /terminate {
 ...
 } def
 <other PostScript definitions>
currentdict readonly pop end

 %%EndProcSet

<script> ::= <setup>
<script body>
<trailer>

<setup> ::= %%BeginSetup
<proc sets init>

<pattern defs>
%%EndSetup

<proc sets init> ::= {<initialize>}*

<initialize> ::= proc_set_name /initialize get exec

 ::= {<re-encoding>}*

<re-encoding> ::= %%BeginEncoding:newfontname oldfontname
 <Z>

%%EndEncoding

<script body> ::= {<element> | <import doc>}*

<element> ::= {<A>}
<group> | <object>

 <group> ::= <u>
<object seq>
<U> |

28 ©1990 Adobe Systems Incorporated. All rights reserved.

<q>
<object seq>
<Q>

<object seq> ::= {<element>}*

<object> ::= <color>
<graphics state>
{%%Note: arbitrary text}
<graphic> | <text>

<graphic> ::= <path>
<paint operator>

<text> ::= <z>
<a> | <e> | <I> | <o> | <r>
{<t>}*
<T>

<import doc> ::= <‘>
%%IncludeFile:filename
<~>

<trailer> ::= %%Trailer
{<terminate>}*

<terminate> ::= proc_set_name /terminate get exec

©1990 Adobe Systems Incorporated. All rights reserved. 29

8. COMPRESSING ILLUSTRATOR DOCUMENTS

The standard Adobe Illustrator document prologue can consume between 6K and 11K
bytes of data in the illustration document file. This can account for significant overhead
both in transmitting files between users and in storing large collections of illustrations.
Therefore it is often desirable to minimize the size of an Adobe Illustrator document. This
section describes explicitly how to remove parts of an Adobe Illustrator document that can
be restored automatically at a later time. The information in this section is presented
implicitly in the body of this document, but is collected here explicitly for convenience.

Adobe Illustrator documents are usually completely self-contained. If an illustration
imports another document, Adobe Illustrator has an option for copying the entire imported
document’s PostScript page description into the illustration document file instead of
maintaining just a filename reference to the other document (see Section 5.8). If the
imported document is another Adobe Illustrator document, the procedures for removing
parts of a document may be applied to the imported document as well.

8.1 Removing Procedure Sets

The procedure sets used in a document are identified in the prologue header (Section 3.1)
with %%DocumentProcSets comments. A procedure set may be removed without
destroying the integrity of the document with respect to the Document Structuring
Conventions, provided that it is replaced with the appropriate %%IncludeProcSet
comment. To remove a procedure set, the associated %%DocumentSuppliedProcSets
comment should be changed to a %%DocumentNeededProcSets comment. Then the
comment %%BeginProcSet, the actual procedure itself, and the %%EndProcSet
comment are replaced by the comment %%IncludeProcSet name version revision, where
name, version, and revision are that of the procedure set being removed. Once this is done,
the remaining %%DocumentNeededProcSets, and %%IncludeProcSet comments can
be used to identify what was removed and where to insert it at a later
 time.

Note: If these changes are made to documents, they will not print unless there is
intelligent post-processing software which reads the Document Structuring
Conventions comments and provides the missing procedure sets. Adobe
Illustrator itself can open these files and rewrite them appropriately for printing.

Procedure sets may be downloaded to a PostScript printer just like fonts. Therefore, the
procedure sets may be transmitted to a printer just once and then initialized, used, and
terminated repeatedly to avoid the overhead of transmitting them repeatedly for a document
that contains many illustrations.

A small savings may be made by removing the one line entry in both the script setup and
trailer sequences that initialize and terminate the procedure sets. Beware, however, that the
order of the procedure sets in the prologue header %%DocumentProcSets comments is
not guaranteed to be the same as the order in which the procedure sets are initialized and
terminated. The %%DocumentProcSets comments may be re-ordered, of course, to carry
this information. Removing the lines from the setup and trailer sequences destroys the
integrity of the document with respect to the Document Structuring Conventions. This
means that typical spooling mechanisms that can insert procedure sets based only on the
%%DocumentProcSets comments found in a PostScript page description file will not
restore the setup and trailer information automatically. If these changes are made, only
software familiar with Adobe Illustrator files (including Adobe Illustrator) will be able to
reconstruct the original files.

30 ©1990 Adobe Systems Incorporated. All rights reserved.

8.2 Removing Font Re-Encodings
The re-encoding of PostScript fonts which use the standard Macintosh encoding may be
removed and will be restored automatically by Adobe Illustrator when the file is read in and
saved again. Note that documents without this explicit re-encoding of the font cannot be
printed directly. The code that re-encodes a font appears between %%BeginEncoding and
%%EndEncoding comments in the script setup part of the document. The array
 defining
the new encoding should be compared with the standard one if there is a possibility of a
different encoding being supplied by an application other than Adobe Illustrator. If the new
encoding is standard, the entire Z operator and its operands may be removed. The trailing
%%EndEncoding comment may be removed as well since it carries no additional
information.

8.3 Removing Other Comments
Section 3.1 which describes the header comments, indicates which comments are always
required and those which are necessary if certain Adobe Illustrator features are used. These
comments are essential if the document is to be manipulated again by Adobe Illustrator. All
of the other comments are ignored by Adobe Illustrator and will be inserted into the
document the next time it is saved to disk. The comments required in all documents are
%%BoundingBox and %%TemplateBox. The other comments read by Adobe Illustrator
are: %%DocumentCustomColors and %%CMYKCustomColor . It would be wise to
check any software that will manipulate reduced Adobe Illustrator files to determine which
of the remaining header comments should be retained.

The %%Note comments that follow the graphics state operators in an Adobe Illustrator
document are preserved by Adobe Illustrator when it edits a document. However, the
comments may be eliminated if the document is frozen and will not be changed again.

©1990 Adobe Systems Incorporated. All rights reserved. 31

9. CREATING ILLUSTRATOR DOCUMENTS

Other applications may create documents to be edited subsequently by Adobe Illustrator.
Very few of the prologue, setup and trailer components are needed by Adobe Illustrator to
be able to read a document. Note that these documents cannot be printed until they are
opened and re-saved within Adobe Illustrator. The following example demonstrates a
minimal document that is accepted by Adobe Illustrator 88:

%!PS-Adobe-2.0 EPSF-1.2
%%BoundingBox:72 72 154 154
%%TemplateBox:0 0 612 792
%%EndComments
%%EndProlog
0 G
72 72 m
154 72 L
154 154 L
72 154 L
72 72 L
s
/_Times-Roman 12 10 0 1 z
[1 0 0 1 108 108]e
6 (Line 1)t
6 (Line 2)t
T
%%Trailer

This example illustration draws a one inch square that is one inch in from the bottom left-
hand corner of page “5” of the default Adobe Illustrator drawing area. First the stroking
color is set to black (“0 G”). The box is constructed with one moveto (m) and three lineto
(L) operations and then it is stroked with the s illustration operator. In the middle of the
square, two lines of centered text (“Line 1” and “Line 2”) are drawn in the Times-Roman
font, which is referred to by its re-encoded name, “_Times-Roman” (see Section 5.7).

The example file is only 235 bytes long, but with all of the Adobe Illustrator prologue and
script overhead, the file is approximately 12K bytes long. Almost all of the additional
information may be inserted automatically to construct a file that may be printed by a
PostScript printer (see Section 8).

Section 10.2 below describes the format for the document template information required by
Adobe Illustrator on the Macintosh. When opening a document without this template
information, Adobe Illustrator will bring up a dialog prompting the user for the location of
the template for this file (if any). By supplying this resource information directly in your
minimal documents, you may avoid this inconvenience.

32 ©1990 Adobe Systems Incorporated. All rights reserved.

10. MACINTOSH RESOURCES

On the Macintosh, the resource fork of an Adobe Illustrator document contains several
ancillary resources. These resources are described in the following sections.

10.1 PICT Resource
An Adobe Illustrator document may have a graphical screen representation provided so that
a preview of the illustration may be manipulated on the screen by a page composition
system. On the Macintosh this representation is saved as a QuickDraw PICT picture
resource within the resource fork of the document. The resource is given a resource type of
PICT and a resource number of 256.

The picture’s picFrame bounding box matches the bounding box of the illustration. This
bounding box is specified by the %%BoundingBox comment in the prologue header. That
is the width and height of the picFrame are the same as the width and height, respectively,
of the bounding box.

The picture resource is composed of two bitmap images: the image itself and its mask. If a
particular bit is set in the mask, then the illustration has actually painted the corresponding
bit in the image. Otherwise the corresponding bit has not been painted and hence should be
transparent.

The mask is placed in the picture first in the QuickDraw srcBic mode. It punches a white
hole in just those areas that are painted. Then the image is placed in the QuickDraw srcOr
mode, which fills in the punched areas, but leaves the other areas untouched.

10.2 TEMP Resource
This resource identifies the name of the document’s template file, if it has one. The resource
has three components which are (in order):

• A 32-bit integer containing the directory identifier of the folder containing the template
file. The integer is zero if the document has no template.

• A Pascal string containing the name of the volume on which the template file resides.
The string is empty if the document has no template.

• A Pascal string containing the name of the template file itself. The string is empty if the
document has no template.

The resource is given a type of TEMP and a resource number of 256.

©1990 Adobe Systems Incorporated. All rights reserved. 33

10.3 PAGE Resource
This resource contains the x and y coordinates of the document’s page origin as specified
by the Page tool. The coordinates are in the default user coordinate system. In this system
the unit length along both axes is 1/72". The resource consists of two 32-bit fixed point
numbers. The first specifies the y coordinate and the second specifies the x coordinate. The
resource is given a type of PAGE and a resource number of 256.

10.4 PREC Resource
This resource contains the standard 120 byte Macintosh Printing Manager print record. It
describes the document’s user specified printing preferences selected from the Page Setup
and Print dialogs. The resource is given a type of PREC and a resource number of 256.

34 ©1990 Adobe Systems Incorporated. All rights reserved.

APPENDIX A: CHANGES SINCE EARLIER VERSIONS

Changes since December 20, 1989 version
• The descriptions for the operators o and a in section 5.7 have been corrected. (They were

reversed.)

