
  

BZIP2: Format Specification

Revised: 
Author: 

Website: 

2016-03-17 
Joe Tsai ⟨joetsai@digital-static.net⟩ 
http://digital-static.net

1 Introduction 
Here we present a specification for the BZip2 format, as there does not exist an official document for the 
format. This is not an official specification and presents the reverse engineering work of Joe Tsai. 
Anything stated here should be fact verified according to the original source. The reference C 
implementation used to derive this work is bzip2-1.0.6. Other implementations of BZip2 may have been 
used to also corroborate the information here. 

2 Specification 

2.1 Bit-packing order 
Contrary to DEFLATE (RFC 1951), BZip2 packs bits with the leading bits in the stream as the most 
significant bits in a byte. Furthermore, when writing a group of bits to the bit-stream, the first bits 
written are the most-significant bits of the integer, rather than the least-significant bits. 
 
As an example, let us decode the given list of bytes as some list of integers with varying bit-lengths: 

1. {0xee 0x5c 0x75} Example data 
2. {11101110 01011100 01110101} Convert bytes to bits (LSB on right) 
3. {1110 111001 011 100 0 1 110101} Group bits according to each integer bit-length 
4. {14 57 3 4 0 1 43} Convert bit-strings to integer values (LSB on right) 

The sequence of bits in step 2 or 3 represents what a BZip2 file would appear as when written out as a 
bit-stream with the leading bits to the left and the trailing bits to the right. For the remainder of the 
document, when the text says, “read   bits” or “write   bits”, it is according to the convention listed 
here; this applies even if   is a multiple of 8 bits. Lastly, any group of bits read is always treated as an 
unsigned integer. 

2.2 Stream format 
In the format specifications below, we use regular expression-like semantics to describe the structure. 
As with the POSIX standard for regular expressions, we use the following operators: 

 Grouping: ()  

 Alternatives: |   

 Quantification: * + ? {n} {n,m}  

 
To describe the structure of the BZip2 format, a grammar similar to Backus-Naur Form will be used to 
describe each element. In the grammar below, the symbol colors have the following meanings: 

 Black: Represents some other symbol 

 Orange: Represents values with a fixed bit or byte length 

 Green: Represents values encoded with Huffman encoding  

 Blue: Represents values encoded using either MTF or Delta encoding 

mailto:joetsai@digital-static.net
http://digital-static.net/
http://www.bzip.org/1.0.6/bzip2-1.0.6.tar.gz
https://www.ietf.org/rfc/rfc1951.txt


  

The BZip2 format is as follows: 
Symbol  Expression 

BZipFile := BZipStream+ 

└──BZipStream := StreamHeader StreamBlock* StreamFooter 

   ├──StreamHeader := HeaderMagic Version Level 

   ├──StreamBlock := BlockHeader BlockTrees BlockData 

   │  ├──BlockHeader := BlockMagic BlockCRC Randomized OrigPtr 

   │  └──BlockTrees := SymMap NumTrees NumSels Selectors Trees 

   │     ├──SymMap := MapL1 MapL2{1,16} 

   │     ├──Selectors := Selector{NumSels} 

   │     └──Trees := (BitLen Delta{NumSyms}){NumTrees} 

   └──StreamFooter := FooterMagic StreamCRC Padding 

 
The highest-level element for BZip2 is the BZipFile, which is comprised of one-or-more BZipStreams. 
The uncompressed output of a BZipFile is the logical concatenation of the uncompressed output of all 
BZipStreams within that file. The uncompressed output of a BZipStream is the logical concatenation of 
the uncompressed output of all the StreamBlocks within that stream. The uncompressed output of a 
StreamBlock will be discussed in detail in the following sections. It is important to note that none of the 
fields within a StreamBlock or StreamFooter are necessarily byte-aligned. Thus, the bit-packing rules 
described in section 2.1 must be followed for all integer fields. 

2.2.1 BlockData 
Before discussing the various components of the BZip2 format, it is most appropriate to describe the 
compression stack that forms the essence of the format. The core of the compressed data is stored 
within the BlockData element within each stream block. 
 
When compressing data, the uncompressed input data goes through a series of stages. In BZip2, there 
are 5 stages: RLE1, BWT, MTF, RLE2, and HUFF. Each stage transforms the input data in some way 
(hopefully reducing the size). Before each stage is described in detail below, a short summary of what 
effects the stage has is shown. The “changes data size” field indicates whether the transformation may 
cause the input and output sizes to differ. The “produces metadata” field indicates whether some other 
auxiliary information is produced by the stage that needs to be stored outside of BlockData. 

2.2.1.1 Run-length encoding (RLE1) 

Input type []byte  Changes data size Yes 

Output type []byte  Produces metadata No 

 
The RLE1 stage replaces repeated runs of the same byte with a shorter string. Every sequence of 4..255 
duplicated bytes is replaced by only the first 4 bytes and a single byte representing the repeat-count. For 
example, the string "AAAAAAABBBBCCCD" will be encoded as "AAAA\x03BBBB\x00CCCD". Even if a run 
only has 4 bytes, a repeat-count of zero is still required. Thus, "BBAAAA" is not a valid output, even if it is 
the last sequence of bytes at the end of buffer. Instead, it must be encoded as "BBAAAA\x00". Since the 
output buffer is bounded in size, an encoder implementation must be careful to ensure that it can write 
the trailing repeat-count if the final 4 input bytes are duplicates. 
 
Also, since the repeat-count can represent a length of up to 255 bytes, duplicate symbols up to 259 
bytes in length may be replaced. The reference C implementation never replaces more than 255 bytes at 



  

a time, but the decompressor is capable of handling repeat sizes between 256 and 259 bytes. A decoder 
implementation should be able to handle these count values as well. Thus, "AAAA\xff" should expand 
to be a string with 259x A’s. For maximal compatibility, it is recommended that an encoder also avoid 
replacing more than 255 bytes at a time. Lastly, there is no requirement that an optimal encoding be 
used. Thus, "AAAA\x00AAAA\x00" or "AAAA\x01AAA" may be used rather than "AAAA\x04" to represent 
the string "AAAAAAAA".  
 
In the worst-case, this stage may expand the data size by      , and in the best-case, this stage may 
reduce the data size by      . 

2.2.1.2 Burrows-Wheeler transform (BWT) 

Input type []byte  Changes data size No 

Output type []byte  Produces metadata Yes 

 
The BWT stage performs the Burrows-Wheeler transform on the input data. Also known as block-
sorting, the transform is described in detail in A Block-sorting Lossless Data Compression Algorithm by 
M. Burrows and D. J. Wheeler. Functionally speaking, the BWT is a permutation of the input data, with 
the special property that the permutation is reversible given an “origin pointer”. 
 
The BWT is done by creating a square matrix, where each row is the cyclic-rotation of the input string. 
This block is then sorted lexicographically. After sorting, the last column is used as the output string. In 
order to be a reversible permutation, an “origin pointer” is needed that allows the decoder to know 
which row in the reconstructed block was the original input string. It is important to note that the 
variant of BWT used in BZip2 does not terminate strings with a special symbol that is lexicographically 
smaller than all other symbols. Instead, strings wrap around as is.  
 

 
Example of forward BWT on the string "banana" 

 
An algorithm to naïvely perform the forward BWT is shown in the Python code below: 

def EncodeBWT(data): 
    matrix = [None] * len(data) 
    for i in range(len(data)): 
        matrix[i] = (data[-i:] + data[:-i], i) 
    matrix.sort() 
    bwt = bytearray([x[-1] for x, _ in matrix]) 
    ptr = matrix.index((data, 0)) 
    return bwt, ptr 

The input string is passed in as a bytearray, and the function returns the BWT’d string as another 
bytearray along with the origin pointer as an integer. This implementation runs in  (     ( )) and is 
not suitable for real applications of BZip2. 

http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf


  

 
The inverse BWT process works by executing   “insert and sort” operations until the original sorted 
matrix is reconstructed. Starting with an empty matrix, the insert phase prepends the input string as a 
column in the matrix, while the sort phase performs the block-sort on the current matrix. After   
operations where   is the length of the input, the original input string will be the  th row in the matrix 
where   is the “origin pointer”. 
 

 

Example of inverse BWT on the string "nnbaa" 
 
An algorithm to perform the inverse BWT is shown in the Python code below: 

def DecodeBWT(bwt, ptr): 
    matrix = [bytearray(len(bwt)) for _ in bwt] 
    for ci in reversed(range(len(bwt))): 
        for ri, b in enumerate(bwt): 
            matrix[ri][ci] = b 
        matrix.sort() 
    data = matrix[ptr] 
    return data 

The shuffled input is passed in as a bytearray in bwt, while the origin pointer is an integer in ptr. The 
return value is a bytearray containing the original input string. This implementation runs in 
 (     ( )) and is not suitable for real applications of BZip2. 
 
Next, we describe an efficient way to perform the forward BWT by using suffix arrays. The suffix array is 
an array of integers that represents the lexicographically sorted list of all suffixes of the input string. It is 
well known that there is a direct relationship between suffix arrays and BWTs such that the BWT can be 
derived from a suffix array in  ( ) runtime. Furthermore, there exist many modern suffix array 
construction algorithms (SACAs) such as SAIS, which runs in  ( ), and DivSufSort, which runs in 
 (     ). The SACA used is beyond the scope of this document. 
 
If the input string terminates with a special symbol that is lexicographically smaller than all other 
symbols, then the BWT is related to suffix arrays as    [ ]   [  [ ]   ], where   is the input string 
and    is the suffix array. However, this is not directly helpful for the BWT used in BZip2 since the 
specific variant used does not terminate strings, but wraps them around as is. Instead, we need a 
version of suffix arrays where the suffixes do wrap around and do not terminate.  
 
Below we demonstrate how to convert a conventional suffix array provided by the function ComputeSA 

to one that uses wrapped suffixes via the function ComputeWrapSA. The exact implementation of 
ComputeSA is not provided. 

https://dl.acm.org/citation.cfm?id=320176.320218
https://sites.google.com/site/yuta256/sais
https://github.com/y-256/libdivsufsort


  

def ComputeWrapSA(data): 
    data2 = data*2 
    idxs = ComputeSA(data2) 
    idxs = [x for x in idxs if x < len(data)] 
    return idxs 

The methodology (reference) shown effectively duplicates the input string (emulating wrap-around 
semantics), computes the suffix array of the duplicated string, and then extracts all indexes that are 
lower than the original input string size. While this method is able to use a conventional SACA as is, it 
does run 2x slower. It is possible to directly modify the SACA to use wrap-around semantics, but that is 
beyond the scope of this document. 
 
Using ComputeWrapSA, we can now compute the BWT using the equation given above as shown in the 
following Python code: 

def EncodeBWT(data): 
    idxs = ComputeWrapSA(data) 
    bwt, ptr = bytearray(len(data)), 0 
    for j, i in enumerate(idxs): 
        if i == 0: 
            ptr = j 
            i = len(data) 
        bwt[j] = data[i-1] 
    return bwt, ptr 

The runtime of this new implementation of EncodeBWT runs as fast as ComputeSA, and can be 
significantly faster than the original function provided. 
 
Lastly, we show how to perform the inverse BWT in  ( ) runtime based on the logic in the C 
implementation and the BWT paper.  

def DecodeBWT(bwt, ptr): 
    cumm, n = [0]*256, 0 
    for v in bwt: 
        cumm[v] += 1  
    for i, v in enumerate(cumm):  
        cumm[i] = n 
        n += v 
 
    perm = [0]*len(bwt) 
    for i, v in enumerate(bwt): 
        perm[cumm[v]] = i 
        cumm[v] += 1 
 
    i = perm[ptr] 
    data = bytearray(len(bwt)) 
    for j in range(len(bwt)): 
        data[j] = bwt[i] 
        i = perm[i] 
    return data 

The runtime of this new implementation of DecodeBWT is  ( ), which is a significant improvement over 
the original function provided. Some implementations compute the cumm histogram as part of the MTF 
stage and perform the de-shuffling portion as part of the RLE1 stage to improve performance. 
 

https://www.quora.com/How-can-I-optimize-burrows-wheeler-transform-and-inverse-transform-to-work-in-O-n-time-O-n-space


  

Here are some examples: 

>>> data = bytearray("she sells seashells by the seashore") 
>>> ComputeSA = lambda x: None if (x != data*2) else [ 
...     54, 19, 44, 9, 61, 26, 38, 3, 57, 22, 47, 12, 64, 29, 55, 20, 69, 60, 
...     25, 37, 2, 46, 11, 63, 28, 50, 15, 40, 5, 34, 59, 24, 36, 1, 49, 14, 
...     66, 31, 51, 16, 41, 6, 52, 17, 42, 7, 67, 32, 68, 33, 53, 18, 43, 8, 
...     45, 10, 62, 27, 39, 4, 35, 0, 48, 13, 65, 30, 58, 23, 56, 21, 
... ] 
 
>>> bwt, ptr = EncodeBWT(data) 
>>> bwt, ptr 
bytearray("sseeyee hhsshsrtssseellholl   eaa b"), 30 
 
>>> buf = DecodeBWT(bwt, ptr) 
>>> buf 
bytearray("she sells seashells by the seashore") 

There are some things to note: For demonstration purposes, a one-time “implementation” of 
ComputeSA is provided that simply returns the suffix array of the pre-determined input string. Also, we 
can see that the BWT’d output tends to contain clusters of duplicated symbols, which is helpful for 
compression. This is the primary purpose of using the BWT in BZip2. The stages to follow are used to 
reduce this repetitiveness to a more compact representation. 
 
Metadata produced: 

 BWT origin pointer 

2.2.1.3 Move-to-front transform (MTF) 

Input type []byte  Changes data size No 

Output type []uint8  Produces metadata Yes 

 
The MTF stage performs the move-to-front transform. The intuition behind the transform is to replace 
every symbol with the index of that symbol in some “stack”. Every time a symbol is used, it is moved to 
the front of the stack (such that it obtains a lower index value). Thus, commonly used symbols will be 
assigned lower index values and runs of the same symbol will be replaced by zeros. This stage is 
effective because the prior BWT stage tends to create clusters of duplicate symbols. Thus, MTF will 
transform those duplicate symbols to be zeros. 
 
The algorithm to perform the forward move-to-front transform is shown in the Python code below: 

def EncodeMTF(syms, stack): 
    idxs = [] 
    for s in syms: 
        i = stack.index(s) 
        stack = [stack.pop(i)] + stack 
        idxs.append(i) 
    return idxs 

The syms variable must be a bytearray, while stack is a sorted list of all the unique symbols that 
appear in syms. The function returns a list of integers representing the indexes to the corresponding 
symbol on the stack. This algorithm runs in  ( ) time where   is the length of syms. In the worst case, 
the symbol being looked up is always at the rear of the stack. However, since the stack is bounded in 
size, the runtime is still linear. 



  

 
The algorithm to perform the inverse move-to-front transform is shown in the Python code below: 

def DecodeMTF(idxs, stack): 
    syms = [] 
    for i in idxs: 
        s = stack[i] 
        stack = [stack.pop(i)] + stack 
        syms.append(s) 
    return bytearray(syms) 

The idxs variable must be a list of integers, while stack is a sorted list of symbols as used in the encode 
function. The function returns the original string as a bytearray. This algorithm also runs in  ( ). 
 

Here are some examples: 

>>> data = bytearray("bbyaeeeeeeafeeeybzzzzzzzzzyz") 
>>> stack = sorted({x for x in data}) 
>>> stack 
[97, 98, 101, 102, 121, 122] 
 
>>> idxs = EncodeMTF(data, stack[:]) 
>>> idxs 
[1, 0, 4, 2, 3, 0, 0, 0, 0, 0, 1, 4, 2, 0, 
 0, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1] 
 
>>> syms = DecodeMTF(idxs, stack[:]) 
>>> syms 
bytearray("bbyaeeeeeeafeeeybzzzzzzzzzyz") 

There are some things to note: The stack is generated by using set comprehension to get a set of all 
unique symbols used in the string before sorting it. Also, when passing the stack into the 
encode/decode functions, a copy of the stack is used by using the [:] notation since the functions 
mutates the stack. 
 
Metadata produced: 

 Symbols used in the MTF stack 

2.2.1.4 Run-length encoding (RLE2) 

Input type []uint8  Changes data size Yes 

Output type []symbol  Produces metadata No 

 
Since the BWT stage tends to create clusters of duplicate symbols, and the MTF stage tends to convert 
runs of the same symbol to be runs of the zero value, the RLE2 stage is used to reduce these long runs of 
zero values to use shorter representations. In this stage, sequences of 0 symbols are replaced by shorter 
sequences of two other symbols called RUNA and RUNB. 
 
The conversion to and from RUN symbols is bijective and can be efficiently performed with normal 
binary arithmetic. To describe this relationship, let us define         as the number of 0 symbols that 
occur sequentially in the input. Also, let us define        as the number of RUNA and RUNB symbols in 
the corresponding numeration. Lastly, let that sequence of RUNA and RUNB symbols represent a binary 
integer,        , where RUNA is the 0 bit, RUNB is the 1 bit, and the leading RUN symbols are in the 
least-significant bit positions. If so, then there exists a relationship between these variables:  



  

 
             (         )           

(where the    operator is a left-shift and the   operator is a bit-wise OR) 
 
Using this equation, we can produce a table that maps zero counts to their corresponding RUN symbols. 
For brevity, we use symbols A and B to represent RUNA and RUNB. The following table is printed with the 
leading RUN symbols on the left (i.e., LSB of         on the left). 

Count Run symbols  Count Run symbols  Count Run symbols 

1 A  22 BBBA  43 AABBA 

2 B  23 AAAB  44 BABBA 

3 AA  24 BAAB  45 ABBBA 

4 BA  25 ABAB  46 BBBBA 

5 AB  26 BBAB  47 AAAAB 

6 BB  27 AABB  48 BAAAB 

7 AAA  28 BABB  49 ABAAB 

8 BAA  29 ABBB  50 BBAAB 

9 ABA  30 BBBB  51 AABAB 

10 BBA  31 AAAAA  52 BABAB 

11 AAB  32 BAAAA  53 ABBAB 

12 BAB  33 ABAAA  54 BBBAB 

13 ABB  34 BBAAA  55 AAABB 

14 BBB  35 AABAA  56 BAABB 

15 AAAA  36 BABAA  57 ABABB 

16 BAAA  37 ABBAA  58 BBABB 

17 ABAA  38 BBBAA  59 AABBB 

18 BBAA  39 AAABA  60 BABBB 

19 AABA  40 BAABA  61 ABBBB 

20 BABA  41 ABABA  62 BBBBB 

21 ABBA  42 BBABA  63 AAAAAA 

This table only shows the mapping for the first 63 counts to their corresponding RUN numerations. This 
mapping is bijective because every positive count maps to exactly one unique sequence of RUN symbols. 
Given a        , the         sequence can be determined. Given a         sequence, the 
        can be determined.  
 
As an example, we can use this mapping to RLE transform the following: 

Input:  [1 0 4 2 3 0 0 0 0 0 1 4 2 0 0 3 4 5 0 0 0 0 0 0 0 0 2 1] 
Output: [1 A 4 2 3 A B       1 4 2 B   3 4 5 B A A           2 1] 

For clarity, we colored the run symbols with a different color. In this example, there are 4 groups of 0 

symbols with counts of [1, 5, 2, 8]. Using the equation above, we can determine the RUN 
numerations used will be [A, AB, B, BAA], which we substitute in place of the 0 symbols to obtain the 
output. It should be noted that since RLE2 increases the cardinality of the symbol alphabet, the number 
of outputted symbols is always less-than-or-equal to the number of input values. 
 
In practice, most implementations will combine the MTF and RLE2 stages. 



  

2.2.1.5 Huffman encoding (HUFF) 

Input type []symbol  Changes data size Yes 

Output type []bit  Produces metadata Yes 

 
In the HUFF stage, we encode the input list of symbols as a sequence of bits on the wire. The intuition 
behind Huffman encoding is to encode frequent symbols with fewer bits, while encoding less frequent 
symbols with more bits. In order to do this, we transform the input symbols into a set of symbols that 
we can Huffman encode.  
 
First, we need to figure out the number of symbols,        , in the Huffman tree.         is 

computed as          –     , where          is the number of symbols in the stack from the 
MTF stage. We subtract 1 for losing the 0 symbol in the RLE2 stage and add 3 for gaining RUNA, RUNB, 
and a special EOB symbol (from this stage). 
 
In the new symbol alphabet, RUNA is always 0, RUNB is always 1, and EOB is always          . All 
other values are linearly distributed between             ; which functionally means all numeric 
symbols in the input will simply be incremented. Lastly, since RUNA and RUNB are always present, 
        must be at least 3 to ensure the presence of EOB. The EOB symbol stands for “end-of-block”. 
It appears exactly once in the symbols list at the end and is used by the Huffman decoder to know when 
to terminate. 
 
For example, consider the following: 

Input:   [1 A 4 2 3 A B 1 4 2 B 3 4 5 B A A 2] 
Symbols: [2 0 5 3 4 0 1 2 5 3 1 4 5 6 1 0 0 3 7] 

 
The input symbols have a MTF stack size of 6. We know that because the maximum numeric value in the 
MTF’d output will always be the highest index in the MTF stack. Thus,          is always 
   (     )   , which means the value of EOB  is 7. When the input is converted to the list of symbols 
to Huffman encode, we see that RUNA and RUNB are encoded as 0 and 1. All other values are simply 
incremented. Lastly, we see that an EOB is appended to the symbols list. 
 
Given a symbols list, a Huffman tree can then be generated to encode the symbols to individual bits. The 
algorithm for generating the optimal tree is not covered here (see A Method for the Construction of 
Minimum-Redundancy Codes by D. A. Huffman). For the symbols list in the example above, one possible 
tree is the following: 

 

http://compression.ru/download/articles/huff/huffman_1952_minimum-redundancy-codes.pdf
http://compression.ru/download/articles/huff/huffman_1952_minimum-redundancy-codes.pdf


  

 
Given that RUNA and RUNB symbols are the most common, they have the shortest code lengths. On the 
other hand, the EOB marker only occurs once and is given the longest code length. In the BZip2 format, 
there is a maximum limit of 20 bits for any Huffman code. 
 
From this tree, we can encode the output bits by tracing the edges from the root node to each leaf for 
the given symbol being encoded: 

Symbols: [  2  0   5   3   4  0   1   2   5   3   1   4   5    6   1  0  0   3    7] 
Output:  [011 00 110 100 101 00 010 011 110 100 010 101 110 1110 010 00 00 100 1111] 

 
It is important to note that BZip2 actually allows multiple Huffman trees to be used. Every group of 50 
symbols can be encoded with a different tree. Thus, in order to determine which tree to use, a list of 
selectors must be provided. The number of elements in the selectors list,        , can be computed as 

        ⌈  
         

  
  ⌉, where           is the length of the symbols list generated above. 

 
The selectors list simply contains the index of which Huffman tree to use. For example, if there were 243 
symbols to encode (including the EOB symbol), then we know that we would need 5 selectors. One 
possible selectors list could be: [0, 0, 1, 2, 1]. In this situation, we would use tree 0 for the first 100 
symbols, tree 1 for the next 50 symbols, tree 2 for the next 50 symbols, and tree 1 for the last 43 
symbols. For this given selector list, there must be least 3 Huffman trees. 
 
The BZip2 format allows between 2 to 6 Huffman trees to be used. Choosing the optimal number of 
trees to use and selecting which tree to use for each group of symbols is an exercise for the encoder 
implementation. Such design considerations are beyond the scope of this document.  
 
Metadata produced: 

 The definition for each Huffman tree 

 The selectors used for each group 

2.2.2 StreamHeader 
Now that we have described the core compression pipeline of BZip2, we can now describe the format 
structure, starting with the stream header, which follows the following grammar:  

StreamHeader := HeaderMagic Version Level 

 
The stream header is guaranteed to be byte-aligned, and its values can be read as regular bytes from the 
underlying stream. The HeaderMagic is the 2 byte string: []byte{'B', 'Z'}, or also the value 0x425a 
when read as a 16-bit integer. The Version is always the byte 'h', or also the value 0x68 when read as 
an 8-bit integer. The BZip1 format used a version byte of '0'; that format is deprecated and is not 
discussed in this document. 
 
The Level is a single byte between the values of '1' and '9', inclusively. This ASCII character, when 
parsed as an integer and multiplied by       , determines the size of the buffer used in the BWT stage. 
Thus, level '1' uses a        byte buffer, while level '9' uses a        byte buffer. When encoding, 
the RLE1 stage must be careful that it is still able to encode the count byte if the trailing 4 bytes in the 
buffer are duplicates. Since this determines the buffer size of the BWT stage, it is entirely possible for a 
stream block to decompress to more bytes than the buffer size due to the RLE1 stage. 



  

2.2.3 StreamBlock 
Grammar format: 
 StreamBlock := BlockHeader BlockTrees BlockData 
 
The BlockHeader and the BlockTrees contains the metadata needed to decode the BlockData for each 
of the transformation stages that require some external metadata. 

2.2.3.1 BlockHeader 
Grammar format: 
 BlockHeader := BlockMagic BlockCRC Randomized OrigPtr 

 
The BlockMagic is the 48-bit integer value 0x314159265359, which is the binary-coded decimal 
representation of  . It is used to differentiate the StreamBlock from the StreamFooter. 
 
The BlockCRC is a 32-bit integer and contains the CRC-32 checksum of the uncompressed data 
contained in BlockData. It is the same checksum used in GZip (RFC 1952, section 8), but is slightly 
different due to the bit-packing differences noted in section 2.1. Suppose you had a function CRC32 
which computed the checksum as needed by GZip, then the checksum needed by BZip2 can be 
computed by first reversing the bits of every byte in the input, computing the checksum, and then 
reversing the bits of the checksum itself as shown in the following Python code:  

def ComputeBlockCRC(data): 
    for i, v in enumerate(data): 
        data[i] = ReverseUint8(v) 
    return ReverseUint32(CRC32(data)) 

 

Example results: 

>>> CRC32 = lambda x: binascii.crc32(x) & 0xffffffff 
>>> ReverseUint8 = lambda x: int('{:08b}'.format(x)[::-1], 2) 
>>> ReverseUint32 = lambda x: int('{:032b}'.format(x)[::-1], 2) 
 
>>> ComputeBlockCRC(bytearray("Hello, world!")) 
0x8e9a7706 

It is important to note that the implementation of ComputeBlockCRC above mutates the input. Also, the 
example above uses two inefficient ways to reverse the bits of 8-bit and 32-bit integers. 
 
The Randomized field is a single bit and should be 0. Previous versions of BZip2 allowed the input data to 
be randomized to avoid pathological strings from causing the runtime to be exponential. Modern BWT 
construction algorithms have guaranteed bounds on the worst-case runtime such that this functionality 
is deprecated. If the bit is 1, then randomization is enabled, which is not covered in this document. 
 
The OrigPtr is a 24-bit integer and contains the “origin pointer” used in the BWT stage. Since the origin 
pointer references a row in the BWT matrix, it implies that                       , where 
         is the size of the BWT input. Based on that equation, we can see that BlockData must 
decompress to at least one byte in order for that check to pass. 

2.2.3.2 BlockTrees 
The BlockTrees contains the metadata necessary for the MTF and HUFF stages. The grammar is: 
 BlockTrees := SymMap NumTrees NumSels Selectors Trees 

 

https://www.ietf.org/rfc/rfc1952.txt


  

The NumTrees field is a 3-bit integer indicating the number of Huffman trees used in the HUFF stage. It 

must be between     . The number may be larger than necessary; that is, it is permissible to define a 

Huffman tree that does not end up being used to decode any symbol in BlockData. 

 
The NumSels field is a 15-bit integer indicating the number of selectors used in the HUFF stage. Since the 
Huffman encoded symbols in BlockData terminate with an EOB symbol, there must be at least 1 
selector defined. The equation to determine the optimal number of selectors is shown in section 2.2.1.5. 
If too few selectors are defined, a decoder must error when it runs out of selectors to use while 
decoding groups of Huffman codes. On the other hand, the C implementation does not error if more 
selectors are defined than is actually used. However, some decoder implementations do have strict 
checks that the proper number of selectors was used. Thus, it is encouraged that an encoder 
implementation never output more selectors than necessary. 
 

In order to show how the SymMap, Selectors, and Trees elements are represented, we use Python 
code to provide a working implementation of the parsing process. Each of the implementations relies on 
being able to read bits from the underlying stream. A simple, but inefficient implementation of a bit 
reader is shown below: 

class BitReader: 
    def __init__(self, data, discard = 0): 
        self.d, self.m = data, 0x80 
        _ = self.ReadBits(discard) 
 
    def ReadBits(self, n): 
        v, d, m = 0, self.d, self.m 
        for _ in range(n): 
            v <<= 1 
            if d[0]&m: 
                v |= 1 
            m >>= 1 
            if m == 0x00: 
                d, m = d[1:], 0x80 
        self.d, self.m = d, m 
        return v 
 
    def ReadBit(self): 
        return self.ReadBits(1) != 0 

The BitReader takes in a bytearray string and an optional argument to discard some number of bits 
from the input.  

2.2.3.2.1 SymMap 
Grammar format: 

SymMap := MapL1 MapL2{1,16} 
 
The SymMap represents the symbol stack used in the MTF stage by using a two-level bit-map to indicate 
which symbols are present. The first element, MapL1, is a 16-bit integer where each bit corresponds to a 
contiguous 16-symbol region of the full 256-symbol space. The leading bit corresponds with symbols 
     , the next bit with symbols 16..31, and so on. The number of bits set determines the number of 
MapL2 elements to follow, which are also 16-bit integers. Similar to the first level, the leading bits 



  

correspond to the lower symbols in the associated 16-symbol region. If the bit is set, then that indicates 
that the corresponding symbol is present. The Python code that implements this is below: 

def ParseSymMap(br): 
    stack = [] 
    l1 = br.ReadBits(16) 
    for i in range(16): 
        if l1 & (0x8000>>i): 
            l2 = br.ReadBits(16) 
            for j in range(16): 
                if l2 & (0x8000>>j): 
                    stack.append(16*i + j) 
    return stack 

The function takes in an instance of BitReader as the variable br and returns a list of integers 
representing the symbol stack. From section 2.2.3.1, we determined that at least one symbol must be 
used, which implies that at least one MapL2 element is present. It is permissible for the map to indicate 
the presence of symbols that are never used. A decoder must be able to handle this situation.  
 
An example of how to decode SymMap is shown in appendix A.2.1. 

2.2.3.2.2 Selectors 
Grammar format: 
 Selectors := Selector{NumSels} 
 Selector := (0|10|110|1110|11110|111110) 

 
The Selectors represents the selectors list used in the HUFF stage. To encode the selectors, a move-to-
front transform is first applied and then each index in the resulting list is written out as a zero-
terminated sequence of one-bits. The Python code to parse the selectors list is shown below: 

def ParseSelectors(br, num_sels, num_trees): 
    idxs = [] 
    for _ in range(num_sels): 
        i = 0 
        while br.ReadBit(): 
            i += 1 
            assert(i < num_trees) 
        idxs.append(i) 
    sels = DecodeMTF(idxs, range(num_trees)) 
    return sels 

The function takes in an instance of BitReader as the variable br and two integers, num_sels and 
num_trees, as determined from section 2.2.3.2. It returns a list of integers, where each integer is the 
index of the Huffman tree used to decode the corresponding group of Huffman codes. As indicated by 
the assertion performed in the function, it is illegal for a selector to reference a Huffman tree that does 
not exist. 
 
An example of how to decode Selectors is shown in appendix A.2.2. 

2.2.3.2.3 Trees 
Grammar format: 
 Trees := (BitLen Delta{NumSyms}){NumTrees} 
 Delta := (10|11)* 0 
 



  

The Trees represents each of the Huffman trees used in the HUFF stage. Each Huffman tree itself is 
represented by a list of integers of length        , where                   . From the 
Python code above, this is equivalent to len(stack)+2. The integers represent the bit-length of each 
corresponding symbol’s Huffman code. Since the Huffman trees in BZip2 use canonical codes, there is a 
well-defined algorithm that converts a list of bit-lengths to a Huffman tree and vice-versa (see RFC 1951, 
section 3.2.2). This list of integers is written as a delta-encoded list, which is headed by a 5-bit integer 
containing an initial bit-length. Each symbol’s length is represented by a zero-terminated sequence of 10 

and 11 bit-strings, which increment or decrement the current bit-length, respectively. The Python code 
below demonstrates how to parse the trees: 

def ParseTrees(br, num_syms, num_trees): 
    trees = [] 
    for _ in range(num_trees): 
        clens = [] 
        clen = br.ReadBits(5) 
        for _ in range(num_syms): 
            while True: 
                assert(clen > 0 and clen <= MaxHuffmanBits) 
                if not br.ReadBit(): 
                    break 
                clen -= +1 if br.ReadBit() else -1 
            clens.append(clen) 
        trees.append(clens) 
    return trees 

The function takes in an instance of BitReader as the variable br and two integers, num_syms and 
num_trees. It returns a 2D list of integers, where the outer dimension is across all the trees, and the 
inner dimension is across all the symbols in a tree. As indicated by the assertion performed in the inner 
loop, the running bit-length may never be zero or greater than MaxHuffmanBits, which is 20. On the 
other hand, there is no requirement that the minimal number of increment/decrement instructions be 
used. Thus, the sequence "10 10 11 10 0" can be used to indicate    instead of the shorter sequence 
"10 10 0". The C implementation will never create the inefficient representation, and it is 
recommended that an encoder implementation also not do so as well. 
 
An example of how to decode Selectors is shown in appendix A.2.3. 
 
The use of canonical Huffman codes is convenient since it is a commonly used technique in other 
compression formats. However, there is a complication when it comes to BZip2. In order for canonical 
codes to work, they must be complete. That is, the Huffman tree generated from the bit-lengths is 
neither over-subscribed (attempting to place more than 2 children per node) nor under-subscribed 
(some nodes have only 1 child). If the code is not complete, then the resulting tree is not well defined. 
The following Python function can determine whether the code is complete given a list of bit-lengths: 

def IsCompleteTree(tree): 
    maxLen = max(tree) 
    sum = 1 << maxLen 
    for clen in tree: 
        sum -= (1 << maxLen) >> clen 
    return sum == 0 

If the tree is complete, then any canonical code generation algorithm can be used. However, if the tree 
is not complete, the reference C implementation does not immediately return an error, and will only do 
so if certain invalid symbols are used. This is unfortunate, as a decoder implementation that intends to 

https://www.ietf.org/rfc/rfc1951.txt
https://www.ietf.org/rfc/rfc1951.txt


  

replicate the original C implementation must now use the exact same “canonical” code generation 
algorithm in order to produce the same results for these technically invalid codes. This may be necessary 
since there exist some buggy BZip2 encoders that actually do produce incomplete codes. As a note, if 
you are writing a BZip2 encoder, please write an implementation of Huffman encoding that always 
generates complete codes so as to not contribute to this problem. The exact algorithm that the C 
implementation uses to construct the Huffman tree will be explored in depth in appendix B. 

2.2.4 StreamFooter 
Grammar format: 
 StreamFooter := FooterMagic StreamCRC Padding 

 
The FooterMagic is the 48-bit integer value 0x177245385090, which is the binary-coded decimal 

representation of √ . It is used to differentiate the StreamBlock from the StreamFooter. 
 
The StreamCRC is a 32-bit integer and contains a custom checksum computed using each of the 
BlockCRCs from each of the preceding StreamBlocks in the same BZipStream. The computation is 
shown in the following Python code: 

def ComputeStreamCRC(blkCRCs): 
    strmCRC = 0 
    for blkCRC in blkCRCs: 
        strmCRC = blkCRC ^ ((strmCRC<<1) | (strmCRC>>31)) 
    return strmCRC & 0xffffffff 

 

Example result: 
>>> ComputeStreamCRC([0x12345678, 0xdeadcafe]) 
0xfac5660e 

 
The Padding field is used to align the bit-stream to the next byte-aligned edge and will contain between 
     bits. It is not required that these bits to be zeros, but it is highly encouraged that an encoder 
implementation only output zeros for these padding bits.  



  

Appendix A: Example BZIP2 files 
For illustrative purposes, here are some examples of valid BZip2 files.  

A.1 Empty stream 
The simplest possible BZip2 file is one that uncompresses to the empty string. The hex-dump of one 
such file is shown below: 

 

The first 4 bytes represent the StreamHeader, while the later 10 bytes represent the StreamFooter. 
Thus, the smallest BZip2 is 14 bytes in size. Compared to other compression formats, BZip2 has relatively 
high overhead and thus, relatively poor compression ratio for very short strings. 

 
The hex-string provided above, when parsed produces this tree diagram: 

 

Including the version flag, 9 bytes are dedicated to magic values alone. 4 bytes are used to hold the CRC, 
which happens to be all zeros when there is no uncompressed output. For an empty stream, the only 
value that can change is the level flag, which can take on various values and still be valid. 

A.2 Normal stream 
More realistically, BZip2 files do actually contain uncompressed data. The hex-dump of one such file is 
shown below: 

 



  

This file decompresses to the string "If Peter Piper picked a peck of pickled peppers, 
where's the peck of pickled peppers Peter Piper picked?????". The StreamHeader, 
BlockHeader, and StreamFooter are highlighted in orange. The bulk of the metadata needed to decode 
BlockData is highlighted in gray. BlockData, which contains the actual compressed data, is highlighted 
in green. Since the uncompressed string is so short, the number of bits needed to represent the 
metadata (gray highlights) is greater than what is needed for the actual compressed data (green 
highlights). Since BZip2 is fundamentally a bit-oriented format, the slanted boundaries indicate that the 
transition from one element to the next is not necessarily byte-aligned. 
 
The hex-string provided above, when parsed produces this tree diagram: 

 

This BZip2 file only contains a single BZipStream, which itself only contains a single StreamBlock. The 
brackets next to each rectangle of the form [       ] indicates the inclusive starting offset and the 
exclusive ending offset in the bit-stream that the rectangle occupies. The integers   and   are byte 
offsets, while   and   are the bit offsets within the current byte. It so happens in this specific BZip2 file 
that Padding contains no bits since the StreamFooter already starts on a byte-aligned edge. 
 
There are two CRC values shown above, one in the StreamHeader and one in the BlockHeader. A 
decompressor can only verify these only after it has actually decompressed the data. However, since we 
already know the uncompressed string, we can demonstrate here that they are correct: 

>>> ComputeBlockCRC(bytearray( 
...     "If Peter Piper picked a peck of pickled peppers, " + 
...     "where's the peck of pickled peppers Peter Piper picked?????" 
... )) 
0x5a55c41e 



  

 
>>> ComputeStreamCRC([0x5a55c41e]) 
0x5a55c41e 

 
In the following sections, we will decode the more complex elements like the SymMap, Selectors, 
Trees, and BlockData. We will use the Python functions defined above to verify the results. To be able 
to do that, we must first define bz2_data which contains a bytearray of the input file: 

>>> bz2_data = bytearray(( 
...     "425a68313141592653595a55c41e00000c5f80200040840000802040002f6cdc" + 
...     "802000484a9a4cd553fc69a553ff553f69501548954fff5551ffaaa0fff55531" + 
...     "ffaaa7fb4b34c9b838ff1614565ae28b9d50b900811a91fa254f085f4b5f5392" + 
...     "4b11c52292d950566b6f9e1772453850905a55c41e" 
... ).decode("hex")) 

A.2.1 Parsing SymMap 
The SymMap occupies bit offsets 137 to 265 and is 128-bits long. The symbol map, as it appears in the 
example file is shown below: 

 

The map contains one SymMapL1 element and seven SymMapL2 elements, the bits of which are shown 
above in orange. The sequence of 0000000000000000 bits in gray are SymMapL2 elements that are 
implied by unset bits in SymMapL1 and do not appear in the actual BZip2 file. The section highlighted in 
blue show visually how the bit map corresponds with the symbols used. By ignoring all unselected 
symbols, we obtain a sorted list of all used symbols in SymbolStack. 
 
Example using Python code: 

>>> br = BitReader(bz2_data, discard = 137) 
>>> stack = ParseSymMap(br) 
>>> stack # Used in MTF stage 
[1, 32, 39, 44, 63, 73, 80, 97, 99, 100, 101, 102,  
 104, 105, 107, 108, 111, 112, 114, 115, 116, 119]  
>>> len(stack) # Used to parse Trees 
22 



  

 

A.2.2 Parsing Selectors 
The Selectors occupies bit offsets 283 to 286 and is 3-bits long. From the diagram in appendix A.2, we 
know that         is 2, which means that the Selectors element in this specific file is not particularly 
long. The bits for the selectors list is below: 

 BitStream/Selectors: [ 
    0 10 
    0  1 
] 

 
Example using Python code: 

>>> br = BitReader(bz2_data, discard = 283) 
>>> ParseSelectors(br, 2, 2) # Used in HUFF stage 
[0, 1] 

A.2.3 Parsing Trees 
The Trees occupies bit offsets 286 to 548 and is 262-bits long. The bit-stream for Trees is shown below: 

BitStream/SymLens: [ 
    # Tree0 
    00010 
        2 
    0 1010100 110 100 100 110 0 110 10101010100 111111110 0 0 110 100 110 100 
    2       5   4   5   6   5 5   4           9         5 5 5   4   5   4   5 
    101010100 11111111110 101010100 1111110 110 100 1010100 0 
            9           4         8       5   4   5       8 8 
 
    # Tree1 
    00001 
        1 
    0 1010100 100 0 100 101010100 1111111111110 1010101010100  0 11111111110 
    1       4   5 5   6        10             4            10 10           5 
    10101010100  0  0  0 1111111111110 1010101010100 110 0 0 11111111110  
             10 10 10 10             4            10   9 9 9           4  
    10101010100 111111110 110 100 
              9         5   4   5 
]  

The bit-stream is shown in orange, while the decoded symbol bit-lengths is shown in cyan. Both Tree0 
and Tree1 start with a 5-bit integer that indicate the initial bit-length. The number of symbol bit-lengths 
to read is        , which is also            or   . 

 

Example using Python code: 

>>> br = BitReader(bz2_data, discard = 286) 
>>> ParseTrees(br, 22+2, 2) # Used in HUFF stage 
[[2, 5, 4, 5, 6, 5, 5, 4, 9, 5, 5, 5, 
  4, 5, 4, 5, 9, 4, 8, 5, 4, 5, 8, 8], 
 [1, 4, 5, 5, 6, 10, 4, 10, 10, 5, 10, 10, 
  10, 10, 4, 10, 9, 9, 9, 4, 9, 5, 4, 5]] 

 



  

As mentioned before, the SymLens is a list of bit-lengths that should form a canonical Huffman tree. 
Rather than showing the Huffman trees, we show below the bit patterns for all the symbol codes that 
those trees would have generated: 

Symbol 
 Tree0  Tree1 

Len Codes Len Codes 

0  2 00  1 0 

1  5 10100  4 1000 

2  4 0100  5 11010 

3  5 10101  5 11011 

4  6 111110  6 111110 

5  5 10110  10 1111111000 

6  5 10111  4 1001 

7  4 0101  10 1111111001 

8  9 111111110  10 1111111010 

9  5 11000  5 11100 

10  5 11001  10 1111111011 

11  5 11010  10 1111111100 

12  4 0110  10 1111111101 

13  5 11011  10 1111111110 

14  4 0111  4 1010 

15  5 11100  10 1111111111 

16  9 111111111  9 111111000 

17  4 1000  9 111111001 

18  8 11111100  9 111111010 

19  5 11101  4 1011 

20  4 1001  9 111111011 

21  5 11110  5 11101 

22  8 11111101  4 1100 

23  8 11111110  5 11110 

A.2.4 Decompressing BlockData 
The BlockData occupies bit offsets 548 to 856 and is 308-bits long. We can now start decompressing 
this block by running all of the transformation stages in reverse using the metadata obtained from the 
preceding elements. 

A.2.4.1 Huffman encoding (HUFF) 
In the HUFF stage, we decode the bits of the block data by using the Huffman table and selectors list 
obtain earlier. Below, a bit-stream is shown in orange of BlockData: 

BitStream/Symbols: [ 
    # Symbols 0..49 using Tree0 
    10110 0110 1001 1001 00 11011 1000 00 11100 0111 111110 00 10110 00 0101 
        5   12   20   20  0    13   17  0    15   14      4  0     5  0    7 
    00 0101 0110 0101 10101 11000 10100 0101 11001 11010 10100 00 10111 00 
     0    7   12    7     3     9     1    7    10    11     1  0     6  0 
    1000 00 00 0100 00 00 1000 11010 1001 00 0111 11101 00 0100 10101 00 11110 
      17  0  0    2  0  0   17    11   20  0   14    19  0    2     3  0    21 
    00 0100 00 10111 
     0    2  0     6 
 



  

    # Symbols 50..91 using Tree1 
    11010 0 1011 0 1011 11101 0 1001 1100 1001 0 0 1001 0 1100 0 1000 11100 0 
        2 0   19 0   19    21 0    6   22    6 0 0    6 0   22 0    1     9 0 
    1010 0 1000 1010 0 1001 0 11011 0 0 1010 1000 0 0 1010 1100 11010 11011 0 
      14 0    1   14 0    6 0     3 0 0   14    1 0 0   14   22     2     3 0 
    111110 0 11110 
         4 0    23 
]  

For convenience, we insert spaces in the bit-stream to group each bit-string according to its given 
Huffman symbol, the decoded value of which is shown underneath in cyan. Note that the bit-stream is 
segregated into two sections, where the first 50 symbols is decoded using Tree0, and the later 42 
symbols is decoded using Tree1. Note that symbol 23 only appears as the last symbol in this sequence 
because the decoder uses it to know when to stop reading Huffman encoded symbols. 
 

Before passing the symbols list to the RLE2 stage, we must remap the symbol alphabet. Recall from 
section 2.2.1.5 that symbols 0 and 1 get mapped to symbols A and B, the EOB symbol 23 gets dropped, 
and all symbols in              simply get decremented by one. The result of this remapping is 
shown below:  

Symbols/Output: [ 
    5 12 20 20 0 13 17 0 15 14 4 0 5 0 7 0 7 12 7 3 9 1 7 10 11 
    4 11 19 19 A 12 16 A 14 13 3 A 4 A 6 A 6 11 6 2 8 B 6  9 10 

    1 0 6 0 17 0 0 2 0 0 17 11 20 0 14 19 0 2 3 0 21 0 2 0 6 
    B A 5 A 16 A A 1 A A 16 10 19 A 13 18 A 1 2 A 20 A 1 A 5 

    2 0 19 0 19 21 0 6 22 6 0 0 6 0 22 0 1 9 0 14 0 1 14 0 6 
    1 A 18 A 18 20 A 5 21 5 A A 5 A 21 A B 8 A 13 A B 13 A 5  

    0 3 0 0 14 1 0 0 14 22 2 3 0 4 0 23 
    A 2 A A 13 B A A 13 21 1 2 A 3 A 
]  

A.2.4.2 Run-length encoding (RLE2) 
The RLE2 stage converts the A and B symbols to become runs of 0 symbols. This conversion process uses 
the bijective numeration described in section 2.2.1.4. The input symbols are shown in orange, while the 
output symbols are shown underneath in cyan: 

Input/Output: [ 
    4 11 19 19 A 12 16 A 14 13 3 A 4 A 6 A 6 11 6 2 8 B   6 9 10 
    4 11 19 19 0 12 16 0 14 13 3 0 4 0 6 0 6 11 6 2 8 0 0 6 9 10 

    BA      5 A 16 AA    1 AA    16 10 19 A 13 18 A 1 2 A 20 A 1 A 5 
    0 0 0 0 5 0 16 0 0 0 1 0 0 0 16 10 19 0 13 18 0 1 2 0 20 0 1 0 5 

    1 A 18 A 18 20 A 5 21 5 AA    5 A 21 AB        8 A 13 AB        13 A 5  
    1 0 18 0 18 20 0 5 21 5 0 0 0 5 0 21 0 0 0 0 0 8 0 13 0 0 0 0 0 13 0 5 

    A 2 AA    13 BAA             13 21 1 2 A 3 A 
    0 2 0 0 0 13 0 0 0 0 0 0 0 0 13 21 1 2 0 3 0 
]  

The resulting list of symbols is to be used as a list of indexes used in the upcoming MTF stage. Note that 
this stage usually outputs more symbols than inputted. A decoder must be careful that this stage does 
not output more symbols than the block size specified by the Level in the StreamHeader. 



  

A.2.4.3 Move-to-front transform (MTF) 
The MTF stage performs the inverse move-to-front transform. In the diagram below, we show how the 
first few symbols are decoded: 

 

The input list of indexes is shown in the left column in orange, with the leading indexes at the top. The 
symbol stack is shown in the middle section as the top row. To decode each index value, we look up the 
symbol value in the stack for the current index, emit that symbol as the output, and move the symbol to 
the front of the stack. After processing all indexes, we obtain the output list of symbols shown in the 
right column in blue.  
 
The full transform is shown below where the input indexes are shown in orange and the output symbols 
are shown in blue as hexadecimal values: 

Input/Output: [ 
     4 11 19 19  0 12 16  0 14 13  3  0  4  0  6  0  6 11  6  2  8  0  0  6  9 
    3f 66 73 72 72 64 6b 6b 65 61 64 64 72 72 66 66 73 2c 65 73 3f 3f 3f 64 01 

    10  0  0  0  0  5  0 16  0  0  0  1  0  0  0 16 10 19  0 13 18  0  1  2  0 
    20 20 20 20 20 65 65 69 69 69 69 65 65 65 65 68 72 70 70 6b 6c 6c 6b 70 70 

    20  0  1  0  5  1  0 18  0 18 20  0  5 21  5  0  0  0  5  0 21  0  0  0  0 
    74 74 70 70 68 70 70 50 50 49 6f 6f 74 77 70 70 70 70 50 50 63 63 63 63 63 

     0  8  0 13  0  0  0  0  0 13  0  5  0  2  0  0  0 13  0  0  0  0  0  0  0 
    63 6b 6b 20 20 20 20 20 20 69 69 70 70 20 20 20 20 65 65 65 65 65 65 65 65 

     0 13 21  1  2  0  3  0 
    65 72 27 72 65 65 20 20 
] 

 
Example using Python code: 

>>> stack = [ 
...     1, 32, 39, 44, 63, 73, 80, 97, 99, 100, 101, 102,  
...     104, 105, 107, 108, 111, 112, 114, 115, 116, 119, 
... ] 
 



  

>>> idxs = [ 
...     4, 11, 19, 19, 0, 12, 16, 0, 14, 13, 3, 0, 4, 0, 6, 0, 6, 11, 6, 2,  
...     8, 0, 0, 6, 9, 10, 0, 0, 0, 0, 5, 0, 16, 0, 0, 0, 1, 0, 0, 0,  
...     16, 10, 19, 0, 13, 18, 0, 1, 2, 0, 20, 0, 1, 0, 5, 1, 0, 18, 0, 18,  
...     20, 0, 5, 21, 5, 0, 0, 0, 5, 0, 21, 0, 0, 0, 0, 0, 8, 0, 13, 0, 
...     0, 0, 0, 0, 13, 0, 5, 0, 2, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 
...     0, 13, 21, 1, 2, 0, 3, 0, 
... ] 
 
>>> bwt = DecodeMTF(idxs, stack[:]) 
>>> str(bwt).encode('hex') 
"3f66737272646b6b6561646472726666732c65733f3f3f6401" + 
"202020202065656969696965656565687270706b6c6c6b7070" + 
"747470706870705050496f6f74777070707050506363636363" + 
"636b6b20202020202069697070202020206565656565656565" + 
"6572277265652020" 

A.2.4.4 Burrows-Wheeler transform (BWT) 
The BWT stage performs the inverse Burrows-Wheeler transform on the input data. Visually showing 
the inverse BWT for the input would occupy too many pages to practically show here. Instead, we rely 
on the Python code to invert the input for us. 
 
Example using Python code: 

>>> bwt 
bytearray( 
    "?fsrrdkkeaddrrffs,es???d\x01     eeiiiieeeehrppkllkp" + 
    "pttpphppPPIootwppppPPcccccckk      iipp    eeeeeeeeer'ree  " 
) 
 
>>> DecodeBWT(bwt, 24) 
bytearray( 
    "If Peter Piper picked a peck of pickled peppers, " + 
    " where's the peck of pickled peppers Peter Piper picked????\x01" 
) 

First, we print the bwt variable to show the raw string in ASCII, rather than in hexadecimal (as was done 
in the MTF stage). The origin pointer used is 24, which we obtained from parsing the preceding 
BlockHeader. Also, since BWT is a permutation, we note that the input and output strings contain the 
exact same characters, albeit in a different order. 

A.2.4.5 Run-length encoding (RLE1) 
The RLE1 decoding for this example is not particularly exciting. Near the end of the string, we see a 
sequence of 4x '?' characters, along with a count byte of 1. Thus, we replace the count with a single 
'?' to obtain the final sequence of 5x '?' characters: 

Input:  "If Peter Piper picked a peck of pickled peppers, " + 
        " where's the peck of pickled peppers Peter Piper picked????\x01" 

Output: "If Peter Piper picked a peck of pickled peppers, " + 
        " where's the peck of pickled peppers Peter Piper picked?????" 



  

Appendix B: Handling degenerate Huffman trees 
As mentioned in section 2.2.3.2.3, Huffman trees used in BZip2 should be canonical trees, which implies 
that they are also complete. Since BZip2 does not error when a non-complete tree is used, the only way 
to behave the same way as the C implementation for these technically invalid trees is to replicate the 
behavior of the C canonical tree generation algorithm. Some decoder implementation avoids this 
problem by using the exact same Huffman decoding algorithm as BZip2. This works just fine, but limits 
the decoder to one specific implementation. In this appendix, we will explore a way to wrap the C 
implementation and provide the Huffman codes in a form that is easier to adopt by other decoder 
implementations. 
 
The wrapper below is written in Go and wraps a ported version of the C library’s canonical code 
generation algorithm. The function HandleDegenerateCodes presented in appendix B.1 takes a 
[]HuffmanCode, which may be either a complete or non-complete tree, and returns a []HuffmanCode, 
which is guaranteed to be a complete tree. The HuffmanCode type is defined as: 

type HuffmanCode struct { 
    Sym uint32 // The symbol being mapped 
    Len uint32 // Bit-length of the Huffman code 
    Val uint32 // Value of the Huffman code (must be in 0..(1<<Len)-1) 
} 

For the input, only the Sym and Len fields must be populated since only the bit-lengths are known. The 
function output will populate the Val field. As mentioned in section 2.1, the leading bits in the bit-
stream will be in the MSB positions of Val. 
 
The wrapper works by running a depth-first search across all possible bit-strings in order to map out the 
entire Huffman code space that the C implementation occupies. If the input tree is under-subscribed, 
the worst-case runtime is  (       ), where        is the maximum bit-length in the input. If the 
input tree is over-subscribed, the worst-case runtime is  (          ), where            is 
258. Unfortunately, buggy encoders typically output under-subscribed trees rather than over-subscribed 
trees, so the runtime of this wrapper is often a bounded exponential. 
  
For example, if the input is an under-subscribed tree: 

Input:  []HuffmanCode{ 
 {Sym: 0, Len: 3}, 
 {Sym: 1, Len: 4}, 
 {Sym: 2, Len: 3}, 
} 

Output: []HuffmanCode{ 
 {Sym:   0, Len: 3, Val: 0}, // 000 
 {Sym:   1, Len: 4, Val: 4}, // 0100 
 {Sym:   2, Len: 3, Val: 1}, // 001 
 {Sym: 258, Len: 4, Val: 5}, // 0101 
 {Sym: 259, Len: 3, Val: 3}, // 011 
 {Sym: 260, Len: 1, Val: 1}, // 1 
} 

Since an under-subscribed tree has missing children, the wrapper function adds several codes with 
invalid symbol values      in order to make the tree complete. When using with this tree, a decoder 
must return an error if any of the invalid symbols are ever used. 



  

 
For example, if the input is an over-subscribed tree: 

Input:  []HuffmanCode{ 
 {Sym: 0, Len: 1}, 
 {Sym: 1, Len: 3}, 
 {Sym: 2, Len: 4}, 
 {Sym: 3, Len: 3}, 
 {Sym: 4, Len: 2}, 
} 

Output: []HuffmanCode{ 
 {Sym: 0, Len: 1, Val: 0}, // 0 
 {Sym: 1, Len: 3, Val: 6}, // 110 
 {Sym: 3, Len: 3, Val: 7}, // 111 
 {Sym: 4, Len: 2, Val: 2}, // 10 
} 

Since an over-subscribed tree has too many children, the wrapper function must remove some symbols 
in order to make the tree complete. 

B.1 Source code 
The Go wrapper is provided below. Since a port of the C implementation is used, a copy of the BZip2 
license is included. The Go wrapper itself is released into the public domain. 

func HandleDegenerateCodes(codes []HuffmanCode) []HuffmanCode { 
    // ==================================================== 
    // This program, "bzip2", the associated library "libbzip2", and all 
    // documentation, are copyright (C) 1996-2010 Julian R Seward.  All 
    // rights reserved. 
    // 
    // Redistribution and use in source and binary forms, with or without 
    // modification, are permitted provided that the following conditions 
    // are met: 
    // 
    // 1. Redistributions of source code must retain the above copyright 
    //    notice, this list of conditions and the following disclaimer. 
    // 
    // 2. The origin of this software must not be misrepresented; you must 
    //    not claim that you wrote the original software.  If you use this 
    //    software in a product, an acknowledgment in the product 
    //    documentation would be appreciated but is not required. 
    // 
    // 3. Altered source versions must be plainly marked as such, and must 
    //    not be misrepresented as being the original software. 
    // 
    // 4. The name of the author may not be used to endorse or promote 
    //    products derived from this software without specific prior written 
    //    permission. 
    // 
    // THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS 
    // OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 
    // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
    // ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY 
    // DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 
    // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 
    // GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 



  

    // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 
    // WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 
    // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 
    // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
    // 
    // Julian Seward, jseward@bzip.org 
    // bzip2/libbzip2 version 1.0.6 of 6 September 2010 
    // ==================================================== 
    const ( 
        statusOkay = iota 
        statusInvalid 
        statusNeedBits 
        statusMaxBits 
 
        maxHuffmanBits = 20 
        maxNumSyms     = 256 + 2 
    ) 
 
    var ( 
        limits [maxHuffmanBits + 2]int32 
        bases  [maxHuffmanBits + 2]int32 
        perms  [maxNumSyms]int32 
        minLen uint32 = maxHuffmanBits 
        maxLen uint32 = 0 
    ) 
 
    // createTables is the BZ2_hbCreateDecodeTables function from the C code. 
    var createTables = func(codes []HuffmanCode) { 
        for _, c := range codes { 
            if c.Len > maxLen { 
                maxLen = c.Len 
            } 
            if c.Len < minLen { 
                minLen = c.Len 
            } 
        } 
 
        var pp int 
        for i := minLen; i <= maxLen; i++ { 
            for j, c := range codes { 
                if c.Len == i { 
                    perms[pp] = int32(j) 
                    pp++ 
                } 
            } 
        } 
 
        var vec int32 
        for _, c := range codes { 
            bases[c.Len+1]++ 
        } 
        for i := 1; i < len(bases); i++ { 
            bases[i] += bases[i-1] 
        } 
        for i := minLen; i <= maxLen; i++ { 



  

            vec += bases[i+1] - bases[i] 
            limits[i] = vec - 1 
            vec <<= 1 
        } 
        for i := minLen + 1; i <= maxLen; i++ { 
            bases[i] = ((limits[i-1] + 1) << 1) - bases[i] 
        } 
    } 
 
    // getSymbol is the GET_MTF_VAL macro from the C code. 
    var getSymbol = func(c HuffmanCode) (uint32, int) { 
        v := c.Val << (32 - c.Len) 
        n := c.Len 
 
        zn := minLen 
        if zn > n { 
            return 0, statusNeedBits 
        } 
        zvec := int32(v >> (32 - zn)) 
        v <<= zn 
        for { 
            if zn > maxLen { 
                return 0, statusMaxBits 
            } 
            if zvec <= limits[zn] { 
                break 
            } 
            zn++ 
            if zn > n { 
                return 0, statusNeedBits 
            } 
            zvec = (zvec << 1) | int32(v>>31) 
            v <<= 1 
        } 
        if zvec-bases[zn] < 0 || zvec-bases[zn] >= maxNumSyms { 
            return 0, statusInvalid 
        } 
        return uint32(perms[zvec-bases[zn]]), statusOkay 
    } 
 
    // Step 1: Create the Huffman trees using the C algorithm. 
    createTables(codes) 
 
    // Step 2: Starting with the shortest bit pattern, explore the whole tree. 
    // If tree is under-subscribed, the worst-case runtime is O(1<<maxLen). 
    // If tree is over-subscribed, the worst-case runtime is O(maxNumSyms). 
    hcodes := make([]HuffmanCode, maxNumSyms) 
    var exploreCode func(HuffmanCode) bool 
    exploreCode = func(c HuffmanCode) (term bool) { 
        sym, status := getSymbol(c) 
        switch status { 
        case statusOkay: 
            // This code is valid, so insert it. 
            c.Sym = sym 
            hcodes[sym] = c 



  

            term = true 
        case statusInvalid: 
            // This code is invalid, so insert an invalid symbol. 
            c.Sym = uint32(len(hcodes)) 
            hcodes = append(hcodes, c) 
            term = true 
        case statusNeedBits: 
            // This code is too short, so explore both children. 
            c0 := HuffmanCode{Len: c.Len + 1, Val: c.Val<<1 | 0} 
            c1 := HuffmanCode{Len: c.Len + 1, Val: c.Val<<1 | 1} 
 
            t0 := exploreCode(c0) 
            t1 := exploreCode(c1) 
            switch { 
            case !t0 && t1: 
                c0.Sym = uint32(len(hcodes)) 
                hcodes = append(hcodes, c0) 
            case !t1 && t0: 
                c1.Sym = uint32(len(hcodes)) 
                hcodes = append(hcodes, c1) 
            } 
            term = t0 || t1 
        case statusMaxBits: 
            // This code is too long, so report it upstream. 
            term = false 
        } 
        return term // Did this code terminate? 
    } 
    exploreCode(HuffmanCode{}) 
 
    // Step 3: Copy new sparse codes to old output codes. 
    codes = codes[:0] 
    for _, c := range hcodes { 
        if c.Len > 0 { 
            codes = append(codes, c) 
        } 
    } 
    return codes 
} 
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