Caligari trueSpace file format

Document version 4.2

May 1999

[image: image1.png]

Caligari Corporation

1959 Landings Drive

Mountain View

CA 94043

Internet: www.caligari.com

email: support@caligari.com

Phone: 415 390 9600

Fax: 415 390 9755

Contents
Contents
2
Introduction
4
Caligari Header
4
Chunk Headers
4
Common elements in chunks
5
Strings
5
Names
6
Local Axes
6
Current Position
6
Chunk Types
8
'Audi' (Audio Chunk)
8
'Axes' (Axes Chunk)
8
'Bone' (Bone Chunk)
9
'Came' (Camera Chunk)
9
'Chan' (Channel Chunk)
9
'CImg' (Caligari Image Chunk)
17
'DDiv' (Dynamic Division Chunk)
18
'DefP' (Deformation Chunk)
18
'Dims' (Dimensioning Chunk)
19
'END ' (End of file Chunk)
20
'ExtO' (External Object Chunk)
20
'ExtD' (External Data Chunk)
21
'EyeC' (Eye constraint Chunk)
21
'Grou' (Group Chunk)
22
'Hidn' (Hidden Object Chunk)
22
'Join' (Joint Chunk)
22
'Knuc' (Knuckle Chunk)
24
'Lght' (Light Chunk)
27
'Mat1' (Material Chunk)
28
'Mbal' (Metaballs Chunk)
30
'MRec' (Material Rectangle Chunk)
31
'Nail' (Nail Chunk)
32
'Nurb' (NURB object Chunk)
32
'NMes' (Control mesh of NURB object Chunk)
33
'NRMs' (Refined control mesh of NURB object Chunk)
34
'OPar' (Plastiform Chunk)
34
'OPDf' (Plastiform deform tool Chunk)
35
'OPPl' (Plastiform mesh Chunk)
36
‘PANT’ (3Dpaint chunk)
36
'Path' (Path Chunk)
36
'PhAn' (Physics object's chunk)
37
'PhAS' (Physics scenes's chunk)
38
'PhWd' (Physics wind's chunk)
39
'PolH' (Polygonal Data Chunk)
40
'PrTx' (Procedural Texture Chunk)
42
'Rads' (Radiosity Options Chunk)
45
'ROpt' (Render Options Chunk)
45
'SADf' (Stand-Alone Deformation Chunk)
47
'Scen' (Scene Chunk)
47
'Scrp' (Script Chunk)
48
'Seff' (Scene Effects Chunk)
49
'SelF' (Selection Chunk)
51
'ShBx' (Shaders Chunk)
52
'Skin' (Skin Chunk)
57
'Unit' (Units Chunk)
57
'URL ' (URL Chunk)
58
'VCol' (Vertex Colors Chunk)
58
'Vews' (Views Chunk)
59
History
62
trueSpace 4
62
added chunks
62
modified chunks
62
trueSpace 3.2
62
trueSpace 3.1
62
trueSpace3
62

Introduction

This document contains details on the geometry and material information stored in Caligari object (*.cob) and Scene (*.scn) files. It should provide enough information for you to be able read and write such files. Parts that are new or changed for 3.0 have been marked New for trueSpace3.

Caligari files are chunked files. They consist of standard header followed by 1 or more data chunks. The last chunk in the file should always be the special 'END ' chunk. Each chunk consists of a chunk header followed by chunk dependent data. Chunks may not be embedded in other chunks. Each chunk contains an ID and a Parent ID. This allows chunks to be “owned” by other chunks.

The file comes in two flavors, ASCII and binary. These formats encode the same information and have the same general layout. The ASCII files can be edited in a text editor while the binary files are faster for programs to load and save and are smaller.

There is also a provision for little-endian or big-endian formats. Currently all Caligari files are little-endian so you can safely ignore this for the moment.

Caligari Header

The header consists of 32 bytes as follows:

Size
Type
Value
Description

9 bytes
char
"Caligari "
Identifies Caligari file

6 bytes
char
"V00.01"
Version number of file. This document describes version 00.01 files

1 byte
char
"A" for ASCII or

"B" for binary
Specifies whether file is in ASCII format or binary format

2 bytes
char
"LH" for little endian or

"HL" for big endian
Intel based machines are little endian and currently all Caligari files are too.

13 bytes
char
" "
Leave as blank spaces

1 byte
char
"\n" Newline character
Newline

When attempting to decide on the format of a file you are trying to read you should check if the first 15 bytes match the first two fields in the header. This should definitively identify the file as a Caligari file. You will also need to know if the file is ASCII or binary and read the appropriate format

Chunk Headers

Each chunk consists of a header followed by chunk dependent data. The chunk header consists of six fields.

The chunk type tells what type the chunk is and what data it contains. Several chunk types are listed later in this document. You should use this field to choose the appropriate routine to read this chunk or if you do not recognize the chunk type you should skip this chunk using the size field described below.

The major and minor version numbers tell you which version of the chunk type this is. If you get a version number other than the ones you know how to read you should most likely skip this chunk.

The chunk ID and the Parent ID fields let chunks be owned by other chunks. Each chunk has a unique chunk ID. You should keep track of these IDs as you read them in. If the Parent ID is zero then the chunk has no parent, otherwise the Parent ID is the chunk ID of a chunk located earlier in the file and this chunk should be considered to be owned by that previous chunk. An example of this is a file created from a cube which has been painted with two materials. The geometry of the cube will be saved in a 'PolH' chunk, and following it will be two material 'Mat1' chunks. Each of the material chunks will have their Parent ID fields set to the chunk ID of the 'PolH' chunk to show that the materials are owned by the cube.

There is also a data size field which tells you how many data bytes are contained in the chunk exclusive of the header. This allows you to quickly skip chunks you don’t recognize or are not interested in. Be aware however that it is permissible to set the data size to -1 to indicate that the size is unknown.

The ASCII chunk header is as follows:

"%4c V%d.%d Id %d Parent %d Size %d"

A typical ASCII chunk header looks like:

"PolH V0.02 Id 2490008 Parent 0 Size 00000947"

This chunk has the type 'PolH' (polygonal data chunk), the major version is 0, the minor version is 2, the chunk id is 2490008, the parent id is 0 (no parent), and there are 947 data bytes following the header in this chunk. I would encourage you to save a few objects in ASCII format and take a look at them in your favorite text editor. This should give you a feel to the general format of Caligari files. To output ASCII files from trueSpace choose the “Save Object As...” option and check the ASCII box in the file dialog box.

The binary header is as follows:

Size
Type
Description

4 bytes
char
Chunk type

2 bytes
short
Major version

2 bytes
short
Minor version

4 bytes
long
Chunk ID

4 bytes
long
Parent ID

4 bytes
long
Number of bytes in chunk data

Common elements in chunks

Here are some common elements which appear is several different chunks:

Strings

In ASCII format strings are represented as used by printf and scanf. That is 1 or more non-whitespace characters followed by a whitespace character. This allows you to use the "%s" format string to read and write strings using printf and scanf.

ASCII format:

"%s"
Binary format:

Size
Type
Description

2 bytes
short
String length

length
bytes
String in ASCII characters. Does not include a terminating NULL character.

Names

Many chunks contain a name field. To keep each name unique within its context, each name has a number attached to it. We refer to this number as the names dupecount, and it is always >= 0. The ASCII format consists of a string which contains the name optionally followed by a comma and the dupecount (e.g. “Obj,1”). Note if the dupecount is absent then it should be assumed to be zero.

ASCII format:

"\nName %s"
Binary format:

Size
Type
Description

2 bytes
short
Name dupecount

2+length
string
Name excluding dupecount (see description of strings)

Local Axes

Some chunks define their own local set of axes. This consists of a position or center for the axes and directions for the X, Y, and Z axes. These are given in World coordinates. The X, Y, and Z axes should be perpendicular to each other and are not relative to the center of axes.

ASCII format:

"\ncenter %g %g %g"

"\nx axis %g %g %g"

"\ny axis %g %g %g"

"\nz axis %g %g %g"

Binary format:

Size
Type
Description

12 bytes
float triple
X, Y, and Z coordinates for center of axes.

12 bytes
float triple
X, Y, and Z coordinates for direction of local X axis.

12 bytes
float triple
X, Y, and Z coordinates for direction of local Y axis.

12 bytes
float triple
X, Y, and Z coordinates for direction of local Z axis.

Current Position

Most chunks which contain 3D geometry define a local space. The current position is a matrix which transforms from local space to world space. The local coordinates are treated as column vectors with a 1 in the fourth position and multiplied by the matrix to get the corresponding World coordinates. Note: trueSpace currently does not use the fourth row of the matrix and this row should always be [0,0,0,1] or the matrix may not be interpreted correctly.

 ASCII format:

"\nTransform"

"\n%g %g %g %g"

"\n%g %g %g %g"

"\n%g %g %g %g"

"\n%g %g %g %g"

Binary format:

Size
Type
Description

16 bytes
float quad
First row of matrix

16 bytes
float quad
Second row of matrix

16 bytes
float quad
Third row of matrix

Note: binary format does not include row 4 of the matrix. Its assumed to be [0,0,0,1].

Chunk Types

'Audi' (Audio Chunk)

New for trueSpace3.

Chunk type: 'Audi'
Major version: 0

Minor version: 1

This chunk stores information about 3D audio source associated with the parent object.

Audio flags have following meanings:

0x0001

object is an emitter

0x0002

object is a listener

0x0004

internal usage

0x0008

don't play sound

0x0010

don't loop sound

ASCII format:

"\nEmitter: %s"

- name of the sound file used as an audio source
"\nIntensity: %g"

- intensity of the source

"\nMinBack: %g"

- sets the range at which the volume is constant

"\nMaxBack: %g"

- sets the range at which the volume is constant

"\nMinFront: %g"

- sets the range at which the volume drops off to zero

"\nMaxFront: %g"

- sets the range at which the volume drops off to zero
"\nFlags: %hd"

- flags

Binary format:

Size
Type
Description

2+length
string
name of the sound file used as an audio source

4 bytes
float
intensity of the source

4 bytes
float
sets the range at which the volume is constant

4 bytes
float
sets the range at which the volume is constant

4 bytes
float
sets the range at which the volume drops off to zero

4 bytes
float
sets the range at which the volume drops off to zero

2 bytes
short
audio flags

'Axes' (Axes Chunk)

Chunk type: 'Axes'
Major version: 0

Minor version: 1

The axes chunk consists of the following:

Chunk Header

Current Position

'Bone' (Bone Chunk)

New for trueSpace4

Chunk type: 'Bone'
Major version: 0

Minor version: 5

The bone chunk consists of the following:

Chunk Header

Name

Local Axes

Current Position

'Came' (Camera Chunk)

Chunk type: 'Came'
Major version: 0

Minor version: 2

The camera chunk consists of the following:

Chunk Header

Name

Local Axes

Current Position

ASCII format:

if Minor version > 1

"\n%10s"

- camera type

acceptable values:
“Camera” – standard camera

“Pancamera” – panoramic camera

if Panoramic camera

"\nmethod %d slit %d width %d height %d pan frames %d tilt frames %d quality %d"

"\npanmin %g panmax %g paninit %g tiltmin %g tiltmax %g tiltinit %g lookat %g"

- for meaning of parameters see binary format

Binary format:

if Minor version > 1

2 bytes
short
Camera type : 8 – standard camera, 512 – panoramic camera

If Panoramic camera

2 bytes
short
QTVR Method: 1 – panoramic movie, 2 – object movie

2 bytes
short
Slit – number of images that should be rendered to make up the full panorama

2 bytes
short
Width – width of the window that the movie will be displayed in

2 bytes
short
Height - height of the window that the movie will be displayed in

2 bytes
short
Pan frames - number of frames generated in horizontal direction

2 bytes
short
Tilt frames - number of frames generated in vertical direction

2 bytes
short
Quality - JPEG compress/quality level

4 bytes
float
Pan minimal - minimum horizontal pan position (in degrees)

4 bytes
float
Pan maximal - maximum horizontal pan position (in degrees)

4 bytes
float
Pan initial - initial horizontal pan position (in degrees)

4 bytes
float
Tilt minimal - minimum vertical tilt position (in degrees)

4 bytes
float
Tilt maximal - maximum vertical tilt position (in degrees)

4 bytes
float
Tilt Initial - initial vertical tilt position (in degrees)

4 bytes
float
Lookat – distance of the hotspot from the camera in case of object movie

'Chan' (Channel Chunk)

Chunk type: 'Chan'
Major version: 0

Minor version: 9

(just a version number change in trueSpace4.2)

This chunk is written to the output file if the parent chunk is animated. A separate chunk is created for each animated attribute.

The channel chunk consists of the following:

Chunk Header

Name of Channel

Type

Type-dependent Parameters

Key-frames

The Name of Channel is an identification of the channel. There has to be one global channel called “Global” for each animated attribute (Type) and an arbitrary number of local channels that can have arbitrary names up to 9 characters. Local channels created by trueSpace have following names: “Local1”, “Local2”,…

ASCII format:

"\nName %s"

Binary format:

Size
Type
Description

2+length
string
Name of channel

The Type specifies an animated attribute. It determines a set of Type-dependent parameters that follows the Type in the chunk and the format of key-frames. The type is one of the following:

"Look"

- look at/ahead constraint

"Rotate"

- rotation

"Move"

- translation

"Scale"

- scaling

"Deform"

- object deformation

"MatRect"

- material rectangle translation and scaling

"LightColor"

- color of the light

"Fog"

- for parameters

"GlobalEnv"

- global environment

"Background"

- background

"Raytrace"

- ray trace reflectivity

"PluginFilter"

- animated plug-in filters

"Nail"

- nail of Inverse Kinematics object

"Joint"

- joint parameters

"Vertex"

- vertex position

"Invisible"

- object invisibility

"ShaderBox"

- material parameters

<eXtension>’:’<type>
- type defined by eXtension

ASCII format:

"\ntype %s"

Binary format:

Size
Type
Description

2+length
string
type of key-frames

The Type-dependent Parameters contains for particular types following:

-Deform channel: index of control point
ASCII format:

"\npoint %d"
Binary format:

Size
Type
Description

4 bytes
long
index of control point

-Vertex channel: index of vertex
ASCII format:

"\nvertex %d"
Binary format:

Size
Type
Description

4 bytes
long
index of vertex

-eXtension channel: index of vertex
ASCII format:

"\nowner %d"
Binary format:

Size
Type
Description

4 bytes
long
index of owner

The Key-frames is a list of key-frames of specified type. It consists of flags and a count of the number of key-frames followed by the key-frames.

Flags contains following:

#define CHANNEL_SPLINE

0x01
// spline interpolation

#define CHANNEL_CLOSED

0x20
// channel is closed

Each key-frame consists of frame number and acceleration (unused) followed by type-dependent attributes.
ASCII format:

"\nflags %hx frames %hd"

for each key-frame type-dependent attributes (see below)

Binary format:

Size
Type
Description

2 bytes
short
flags (see above)

2 bytes
short
number of key-frames

?
?
key-frames (see below)

LookAt key-frame consists of start/end flag, type of Look constraint (0x01 for LookAt) and the name of the object to look at. The name is represented by the full name.

ASCII format:

"\ntime %g acc %g look %hx type %hx %s"

look - start (0x1000) or end (0x2000) flag

type - LookAt (0x01)

%s - name of the object to look at

Binary format:

Size
Type
Description

4 bytes
float
frame number

4 bytes
float
acceleration

2 bytes
short
looking starts (0x1000) or ends (0x2000)

2 bytes
short
type of Look constraint: 0x01 for LookAt

2+length
string
name of the object to look at

LookAhead key-frame consists of start/end flag, type of Look constraint and parameters of looking along the path.

ASCII format:

"\ntime %g acc %g look %hx type %hx tension %f bias %f bank %f"

look - start (0x1000) or end (0x2000) flag

type - LookAhead (0x02) or LookAhead with Banking (0x12)

tension - the higher value, the less follows small curvatures (1 - 200)

bias - overshooting/undergoing (-1. - 1.)

bank - degree of banking (-1. - 1.)

Binary format:

Size
Type
Description

4 bytes
float
frame number

4 bytes
float
acceleration

2 bytes
short
looking starts (0x1000) or ends (0x2000)

2 bytes
short
type of Look constraint (see above)

4 bytes
float
tension

4 bytes
float
bias

4 bytes
float
banking

Rotate key-frame consists of spline parameters and the relative orientation represented by a quaternion.

ASCII format:

"\ntime %g acc %g t %g c %g b %g orientation %g %g %g %g"

t - spline tension (from -1. to 1.)

c - spline continuity (from -1. to 1.)

b - spline bias (from -1. to 1.)

orientation - relative orientation (quaternion)

Binary format:

Size
Type
Description

4 bytes
float
frame number

4 bytes
float
acceleration

4 bytes
float
spline tension

4 bytes
float
spline continuity

4 bytes
float
spline bias

16 bytes
float quadruple
quaternion for relative orientation.

Move key-frame consists of spline parameters and the relative position.

ASCII format:

"\ntime %g acc %g t %g c %g b %g position %g %g %g "

t - spline tension (from -1. to 1.)

c - spline continuity (from -1. to 1.)

b - spline bias (from -1. to 1.)

position - relative position

Binary format:

Size
Type
Description

4 bytes
float
frame number

4 bytes
float
Acceleration

4 bytes
float
spline tension

4 bytes
float
spline continuity

4 bytes
float
spline bias

12 bytes
float triple
X, Y, and Z coordinates for relative position.

Scale key-frame consists of spline parameters and the relative size.

ASCII format:

"\ntime %g acc %g t %g c %g b %g size %g %g %g "

t - spline tension (from -1. to 1.)

c - spline continuity (from -1. to 1.)

b - spline bias (from -1. to 1.)

size - relative size

Binary format:

Size
Type
Description

4 bytes
float
frame number

4 bytes
float
Acceleration

4 bytes
float
spline tension

4 bytes
float
spline continuity

4 bytes
float
spline bias

4 bytes
float
X value for relative size.

16 bytes
floats
Unused

4 bytes
float
Y value for relative size.

16 bytes
floats
Unused

4 bytes
float
Z value for relative size.

4 bytes
float
Unused

Deform key-frame consists of spline parameters and the relative position of the control point specified in the Type-dependent parameters in the channel header.

Parent chunk of the Deform channel has to be ‘DefP’ type.

ASCII format:

"\ntime %g acc %g t %g c %g b %g position %g %g %g "

t - spline tension (from -1. to 1.)

c - spline continuity (from -1. to 1.)

b - spline bias (from -1. to 1.)

position - relative position

Binary format:

Size
Type
Description

4 bytes
float
frame number

4 bytes
float
acceleration

4 bytes
float
spline tension

4 bytes
float
spline continuity

4 bytes
float
spline bias

12 bytes
float triple
X, Y, and Z coordinates for relative position.

MatRect key-frame consists of ranges for U and V values in which the material rectangle lies inside of the UV space.

Parent chunk of the MatRect channel has to be ‘MRec’ type.

ASCII format:

"\ntime %g acc %g umin %g umax %g vmin %g vmax %g "

umin - minimum U value

umax - maximum U value

vmin - minimum V value

vmax - maximum V value

Binary format:

Size
Type
Description

4 bytes
float
frame number

4 bytes
float
acceleration

4 bytes
float
minimum U value

4 bytes
float
maximum U value

4 bytes
float
minimum V value

4 bytes
float
maximum V value

LightColor key-frame consists of color (red, green, blue).

Parent chunk of the LightColor channel has to be ‘Lght’ type.

ASCII format:

"\ntime %g acc %g color %g,%g,%g"

color - Color (Red, Green, Blue) (0.0 - 1.0)

Binary format:

Size
Type
Description

4 bytes
float
frame number

4 bytes
float
acceleration

4 bytes
float
Red component of color (0.0 - 1.0)

4 bytes
float
Green component of color (0.0 - 1.0)

4 bytes
float
Blue component of color (0.0 - 1.0)

Fog key-frame consists of fog enable/disable flag, fog color, fog near and far clipping planes, and total fog percentage.

Parent chunk of the Fog channel has to be ‘Scen’ type.

ASCII format:

"\ntime %g acc %g fog %hd near %g far %g max %g"

"\n\trgb %g,%g,%g "

fog - Fog enabled/disabled (1-enabled, 0-disabled)

near - Fog near clipping distance

far - Fog far clipping distance

max - Attenuation of background pixels by fog (0.0 - 1.0)

rgb - Color (Red, Green, Blue) (0.0 - 1.0)

Binary format:

Size
Type
Description

4 bytes
float
frame number

4 bytes
float
acceleration

2 bytes
short
Fog enabled/disabled (1-enabled, 0-disabled)

12 bytes
float
RGB components of fog (0.0 - 1.0)

4 bytes
float
Fog near clipping distance

4 bytes
float
Fog far clipping distance

4 bytes
float
Attenuation of background pixels by fog (0.0 - 1.0)

GlobalEnv key-frame consists of global environment color and global environment name.

Parent chunk of the GlobalEnv channel has to be ‘Scen’ type.

ASCII format:

"\ntime %g acc %g globalenviron: %s flags %hd "

"\n\trgb %g,%g,%g "

globalenviron - Name of the global environment map

flags - Environment enabled/disabled (1-enabled, 0-disabled)

rgb - Color (Red, Green, Blue) (0.0 - 1.0)

Binary format:

Size
Type
Description

4 bytes
float
frame number

4 bytes
float
acceleration

12 bytes
float
RGB components of the global environment (0.0 - 1.0)

2 bytes
short
Environment enabled/disabled (1-enabled, 0-disabled)

2+length
string
Name of the global environment map

Background key-frame consists of background color and background name.

Parent chunk of the Background channel has to be ‘Scen’ type.

ASCII format:

"\ntime %g acc %g background: %s flags %hd "

"\n\trgb %g,%g,%g alpha %g "

background: - Name of the background map

flags - Background enabled/disabled (1-enabled, 0-disabled)

rgb, alpha - RGBA components of the background (0.0 - 1.0)

Binary format:

Size
Type
Description

4 bytes
float
frame number

4 bytes
float
acceleration

16 bytes
float
RGBA components of the background (0.0 - 1.0)

2 bytes
short
Background enabled/disabled (1-enabled, 0-disabled)

2+length
string
Name of the background map

Raytrace key-frame consists of minimum reflectivity for ray traced reflection.

Parent chunk of the Raytrace channel has to be ‘Scen’ type.

ASCII format:

"\ntime %g acc %g raytrace %hd min_ks %g "

raytrace - Raytrace enabled/disabled (1-enabled, 0-disabled)

min_ks - minimum reflectivity for ray traced reflection (0.0 - 1.0)

Binary format:

Size
Type
Description

4 bytes
float
frame number

4 bytes
float
acceleration

2 bytes
short
Raytrace enabled/disabled (1-enabled, 0-disabled)

4 bytes
float
minimum reflectivity for ray traced reflection (0.0 - 1.0)

PluginFilter key-frame consists of filter parameters: area, mask, number of repeats, foreground and background color, and filter data of specified size.

Parent chunk of the PluginFilter channel has to be ‘Filt’ type.

ASCII format:

"\ntime %g acc %g plugin: %s "

"\n\tmask %hd filter area %hd repeats %hd "

"\n\tfore rgb %g,%g,%g back rgb %g,%g,%g"

"\n\tsize %hd ",

plugin: - name of the plug-in filter

mask - mask

filter area - filter area

repeats - number of repeats

fore rgb - foreground RGB components

back rgb - background RGB components

size - data size followed by <size> number of bytes of filter data

Binary format:

Size
Type
Description

4 bytes
float
frame number

4 bytes
float
acceleration

2 bytes
short
mask

2 bytes
short
filter area

2 bytes
short
number of repeats

12 bytes
float
RGB components of the foreground (0.0 - 1.0)

12 bytes
float
RGB components of the background (0.0 - 1.0)

2 bytes
short
data size

size
byte
filter data

New for trueSpace3

Nail key-frame consists of the name of nailed object and the relative offset of the nail from the center of the nailed object.

Parent chunk of the Nail channel has to be ‘Nail’ type.

ASCII format:

"\ntime %g acc %g object %s position %g %g %g "

object - name of the nailed object (name inside of IK object)

position - relative offset of the nail from the center of the nailed object

Binary format:

Size
Type
Description

4 bytes
float
frame number

4 bytes
float
acceleration

2+length
string
Name of nailed object

12 bytes
float triple
X, Y, and Z coordinates for relative offset of the nail position from the center of the object.

New for trueSpace3

Joint key-frame consists of values for all six degrees of freedom.

Parent chunk of the Joint channel has to be ‘Join’ type.

ASCII format:

"\ntime %g acc %g RotX %g RotY %g RotZ %g TransX %g TransY %g TransZ %g"

RotX - Pitch value

RotY - Yaw value

RotZ - Roll value

TransX - value of Translation along X axis

TransY - value of Translation along Y axis

TransZ - value of Translation along Z axis

Binary format:

Size
Type
Description

4 bytes
float
frame number

4 bytes
float
acceleration

4 bytes
float
Pitch value

4 bytes
float
Yaw value

4 bytes
float
Roll value

4 bytes
float
value of Translation along X axis

4 bytes
float
value of Translation along Y axis

4 bytes
float
value of Translation along Z axis

New for trueSpace3.1

Vertex key-frame consists of spline parameters and the relative position of the vertex specified in the Type-dependent parameters in the channel header.

ASCII format:

"\ntime %g acc %g t %g c %g b %g position %g %g %g "

t - spline tension (from -1. to 1.)

c - spline continuity (from -1. to 1.)

b - spline bias (from -1. to 1.)

position - relative position

Binary format:

Size
Type
Description

4 bytes
float
frame number

4 bytes
float
Acceleration

4 bytes
float
spline tension

4 bytes
float
spline continuity

4 bytes
float
Spline bias

12 bytes
float triple
X, Y, and Z coordinates for relative position.

New for trueSpace3.1

Invisible key-frame consists of specification of beginning and ending of invisibility.

ASCII format:

"\ntime %g invisible %s "

invisible – BEGIN or END

Binary format:

Size
Type
Description

2 bytes
short
1000 for BEGIN or 2000 for END

New for trueSpace4
ShaderBox key-frame – for details see ShBx chunk.

'CImg' (Caligari Image Chunk)

Chunk type: 'CImg'
Major version: 0

Minor version: 1

The chunk contains 2D pixel data.

ASCII format:

"\nwidth %ld height %ld"
- width and height of the image

" %ld"

- width*height times pixel information (RGBA

 information in bytes of each long)

Binary format:

Size
Type
Description

4 bytes
long
width of the image

4 bytes
long
height of the image

4 bytes each
long
pixels of the image (RGBA information in bytes of each long)

'DDiv' (Dynamic Division Chunk)

Chunk type: 'DDiv'
Major version: 0

Minor version: 1

This chunk is written to the output file if the parent chunk contains the polyhedron which changes its polygonal mesh during the deformation of the object to reduce non-planarity of deformed faces.

ASCII format:

"\nFlags %hx"

- dyndiv flag - if bit 0x1000 is set object is

 dynamically divided

Binary format:

Size
Type
Description

2 bytes
short
dyndiv flag - if bit 0x1000 is set object is dynamically divided

'DefP' (Deformation Chunk)

Chunk type: 'DefP'
Major version: 0

Minor version: 4

The deformation chunk consists of the following:

Chunk Header

Name

Local Axes

Current Position

Deformation Parameters

Deformed Objects

The Deformation Parameters consists of a type of the deformation, number of deformation floors, and the position, the orientation and the size of deformation lattice.

ASCII format:

"\ntype %s"

- type of deformation:
"Object"
- object deformation
"Plane"
- planar free-standing deformation
"Pipe"
- cylindrical free-standing deformation
"Cube"
- general free-standing deformation
"\nFloors %hd %hd %hd"
- number of deformation floors along S, T, and U axes
"\nX0 %f %f %f"

- position of the base corner of the deformation lattice
"\nS %f %f %f"

- S axis (direction and size)

"\nT %f %f %f"

- T axis (direction and size)
"\nU %f %f %f"

- U axis (direction and size)
Binary format:

Size
Type
Description

2 bytes
short
type of deformation:

0x00 - object deformation

0x08 - general free-standing deformation

0x10 - cylindrical free-standing deformation

0x40 - planar free-standing deformation

6 bytes
short triple
number of deformation floors along S, T, U axes.

12 bytes
float triple
X, Y, and Z coordinates for X0 corner.

12 bytes
float triple
X, Y, and Z coordinates for S vector.

12 bytes
float triple
X, Y, and Z coordinates for T vector.

12 bytes
float triple
X, Y, and Z coordinates for U vector.

The Deformed Objects is a list of names of objects that are deformed by this deformation. Deformation chunk has to have the parent that can be either an object or ‘SADf’ chunk. This parent is automatically deformed by this deformation. However the free-standing deformation can deform arbitrary number of objects.

ASCII format:
"\nObjects %d"
- gives a number of deformed objects

for each object

"\n%s"

- name of the object
Binary format:

Size
Type
Description

4 bytes
long
Number of deformed objects

2+length each
string
Name of object.

'Dims' (Dimensioning Chunk)

Chunk type: 'Dims'
Major version: 0

Minor version: 1

The dimensioning chunk consists of the following:

Chunk Header

Name

Dimensioning parameters

ASCII format:

"\nflags %hx"

- internal flags - possible values:

 0x0001 - always set

 0x0020 - set for active dimension

"\nvect1 %d"

- index into vertex list of parent - a first vertex of

 dimension
"\nv1pos %g,%g,%g"
- position of the first vertex in basic object space

"\nnorm1 %g,%g,%g"
- normal at the first vertex

"\nvect2 %d"

- index into vertex list of parent - a second vertex of

 dimension
"\nv2pos %g,%g,%g"
- position of the second vertex in basic object space

"\nnorm2 %g,%g,%g"
- normal at the second vertex

Binary format:

Size
Type
Description

2 bytes
short
internal flags - see above for description

4 bytes
long
index into vertex list of parent - a first vertex of dimension

12 bytes
float
position of the first vertex in basic object space

12 bytes
float
normal at the first vertex

4 bytes
long
index into vertex list of parent - a second vertex of dimension

12 bytes
float
position of the second vertex in basic object space

12 bytes
float
normal at the second vertex

'END ' (End of file Chunk)

Chunk type: 'END '
Major version 1

Minor version 0

This chunk contains no data. It signifies the end of the file and must always be the last chunk in the file.

'ExtO' (External Object Chunk)

New for trueSpace3.2

Chunk type: 'ExtO'
Major version: 3

Minor version: 2

The external object chunk consists of the following:

Chunk Header

Type Name

Name

Local Axes

Current Position

Data

The Type Name is the name of an eXtension followed by the name of external type of object.

ASCII format:

"\ntype %s"

Binary format:

Size
Type
Description

2+length
String
Name of Type: <eXtension>’:’<type>

The Data is a block defined by the eXtension.

'ExtD' (External Data Chunk)

New for trueSpace3.2

Chunk type: 'ExtD'
Major version: 3

Minor version: 2

The external data chunk consists of the following:

Chunk Header

Type Name

Data

The Type Name is the name of an eXtension followed by the name of external type of data.

ASCII format:

"\ntype %s"

Binary format:

Size
Type
Description

2+length
String
Name of Type: <eXtension>’:’<type>

The Data is a block defined by the eXtension.

'EyeC' (Eye constraint Chunk)

Chunk type: 'EyeC'
Major version: 0

Minor version: 1

The chunk is stored as a child of other chunk (usually camera chunk) - it tells that eye associated with a particular view (given by view number) is constrained to move with the parent object of this chunk.

ASCII format:

"\nView %hd"
- view number

Binary format:

Size
Type
Description

2 bytes
short
View number

'Grou' (Group Chunk)

Chunk type: 'Grou'
Major version: 0

Minor version: 1

The group chunk consists of the following:

Chunk Header

Name

Local Axes

Current Position

See the appropriate sections for descriptions of each of these.

'Hidn' (Hidden Object Chunk)

New for trueSpace3.

Chunk type: 'Hidn'
Major version: 0

Minor version: 1

This chunk is written to the output file if the parent chunk contains the object which is hidden in the scene.

ASCII format:

"\nHidden %hd"

- hidden flag - if bit 0x0008 is set object is

 hidden

Binary format:

Size
Type
Description

2 bytes
short
hidden flag - if bit 0x0008 is set object is hidden

'Join' (Joint Chunk)

New for trueSpace3

Chunk type: 'Join'
Major version: 0

Minor version: 5

The joint chunk consists of the following:

Chunk Header

Name

Local Axes

Current Position

Joint Axes and Connectors

Degrees of Freedom

Linked Objects

The Joint Axes and Connectors is a list of axes for particular degrees of freedom and the direction and the position of both connectors.

ASCII format:

"\ncenter1 %g %g %g"
- position of connector1
"\ncenter2 %g %g %g"
- position of connector2
"\nx axis %g %g %g"
- direction of Pitch axis
"\ny axis %g %g %g"
- direction of Yaw axis
"\nz1 axis %g %g %g"
- direction of connector1
"\nz2 axis %g %g %g"
- direction of connector2 (Roll axis)
"\nup %g %g %g"

- direction of local vertical
Binary format:

Size
Type
Description

12 bytes
float triple
X, Y, and Z coordinates for position of connector1.

12 bytes
float triple
X, Y, and Z coordinates for position of connector2.

12 bytes
float triple
X, Y, and Z coordinates for direction of Pitch axis.

12 bytes
float triple
X, Y, and Z coordinates for direction of Yaw axis.

12 bytes
float triple
X, Y, and Z coordinates for direction of connector1.

12 bytes
float triple
X, Y, and Z coordinates for direction of Roll axis (connector2).

12 bytes
float triple
X, Y, and Z coordinates for direction of vertical.

The Degrees of Freedom consists of the specification of degrees of freedom of the joint followed by parameters for each of them. Parameters include the specification whether the motion has limits, the Stiffness, and Min and Max Limits.

ASCII format:
"\nDoF %hx"

- gives a set of degrees of freedom. Each degree of freedom is represented by the flag defined as follows:
#define JOINT_ROT_X

0x0001 // rotation about X axis (Pitch)

#define JOINT_ROT_Y

0x0002 // rotation about Y axis (Yaw)

#define JOINT_ROT_Z

0x0004 // rotation about Z axis (Roll)

#define JOINT_TRANS_X
0x0010 // translation along X axis

#define JOINT_TRANS_Y
0x0020 // translation along Y axis

#define JOINT_TRANS_Z
0x0040 // translation along Z axis

for each degree of freedom specified in DoF one of following (in this order):

"\nRotX Flags %hx Stiffness %f Limits %f %f"
- Pitch
"\nRotY Flags %hx Stiffness %f Limits %f %f"
- Yaw
"\nRotZ Flags %hx Stiffness %f Limits %f %f"
- Roll
"\nTransX Flags %hx Stiffness %f Limits %f %f"
- X translation
"\nTransY Flags %hx Stiffness %f Limits %f %f"
- Y translation
"\nTransZ Flags %hx Stiffness %f Limits %f %f"
- Z translation
Flags specify whether the motion is restricted inside the limits. The flag is different for rotational and translational degrees of freedom:

#define DOF_TRANS_LIMITS
0x0001
// (bit 0)
#define DOF_ROT_LIMITS
0x0010
// (bit 4)

The Stiffness ranges from zero to infinity.

The Limits for rotational degrees of freedom are in radians.

Binary format:

Size
Type
Description

2 bytes
short
Set of degrees of freedom

?
?
Degrees of freedom

A degree of freedom is:

Size
Type
Description

2 bytes
short
Flags (see above)

4 bytes
float
Stiffness

4 bytes
float
Min limit

4 bytes
float
Max limit

The Linked Objects are the names of up to two objects that are linked by the joint. If the joint chunk has the parent (the joint is a part of the articulated object), names are represented by the full name inside of the articulated object. Otherwise (the joint is a free-standing joint) names are represented by the full name inside the scene.

ASCII format:

"\nobject1 %s"

"\nobject2 %s"

If one or both objects are missing, <None> string is used.

Binary format:

Size
Type
Description

2+length
string
Name of object1 (or <None>)

2+length
string
Name of object2 (or <None>)

'Knuc' (Knuckle Chunk)

New for trueSpace4

Chunk type: 'Knuc'
Major version: 0

Minor version: 3

The bone chunk consists of the following:

Chunk Header

Name

Local Axes

Current Position

Linked Muscles and Contractor

Initial Degrees of Freedom

Initial Joint Axes and Connectors

Contractor Parameters

The Linked Muscles are the names of up to two deformation objects that are linked by the knuckle. Names are represented by the full name inside of the articulated object.

The Contractor is the name of one of above muscles or <None>.

ASCII format:

"\nmuscle1 %s"

"\nmuscle2 %s"

"\ncontractor %s"

If one or both muscles are missing, <None> string is used.

Binary format:

Size
Type
Description

2+length
string
Name of muscle1 (or <None>)

2+length
string
Name of muscle2 (or <None>)

2+length
string
Name of contractor (or <None>)

The Initial Degrees of Freedom consists of the values of degrees of freedom of the parent joint at the moment of skinning.

ASCII format:
"\nRotX %g RotY %g RotZ %g TransX %g TransY %g TransZ %g"

- gives initial values of degrees of freedom.
Binary format:

Size
Type
Description

4 bytes
Float
Initial Pitch value

4 bytes
Float
Initial Yaw value

4 bytes
Float
Initial Roll value

4 bytes
Float
Initial TransX value

4 bytes
Float
Initial TransY value

4 bytes
Float
Initial TransZ value

The Initial Joint Axes and Connectors is a list of axes for particular degrees of freedom and the direction and the position of both connectors of the parent joint at the moment of skinning.

ASCII format:

"\ncenter1 %g %g %g"
- position of connector1
"\ncenter2 %g %g %g"
- position of connector2
"\nx axis %g %g %g"
- direction of Pitch axis
"\ny axis %g %g %g"
- direction of Yaw axis
"\nz1 axis %g %g %g"
- direction of connector1
"\nz2 axis %g %g %g"
- direction of connector2 (Roll axis)
"\nup %g %g %g"

- direction of local vertical
Binary format:

Size
Type
Description

12 bytes
float triple
X, Y, and Z coordinates for position of connector1.

12 bytes
float triple
X, Y, and Z coordinates for position of connector2.

12 bytes
float triple
X, Y, and Z coordinates for direction of Pitch axis.

12 bytes
float triple
X, Y, and Z coordinates for direction of Yaw axis.

12 bytes
float triple
X, Y, and Z coordinates for direction of connector1.

12 bytes
float triple
X, Y, and Z coordinates for direction of Roll axis (connector2).

12 bytes
float triple
X, Y, and Z coordinates for direction of vertical.

The Contractor Parameters consists of flags and optional (according flags) parameters for contractor, flexor and extensor.

ASCII format:

"\nflags %x"
- contractor flags.

Contractor flags have following meanings:

0x0001

MUSCLE_CONTRACTOR - knuckle contracts one of linked muscles

0x0002

MUSCLE_FLEXOR – bi-directional contraction on flexor side

0x0004

MUSCLE_EXTENSOR - bi-directional contraction on extensor side

For MUSCLE_CONTRACTOR:

" strength %f %f %f falloff %f"
· strength in three directions (Up, Width, Length)

· falloff

For MUSCLE_FLEXOR:

"\nflexor %f %f %f strength %f %f %f falloff %f"
· flexor orientation

· strength in three directions (Up, Width, Length)

· falloff

For MUSCLE_EXTENSOR:

"\nextensor %f %f %f strength %f %f %f falloff %f"
· extensor orientation

· strength in three directions (Up, Width, Length)

· falloff

Binary format:

Size
Type
Description

2 bytes
short
Flags

4 bytes
float
Strength

4 bytes
float
Width

4 bytes
float
Length

4 bytes
float
Falloff

12 bytes
float triple
Flexor

4 bytes
float
Flexor Strength

4 bytes
float
Flexor Width

4 bytes
float
Flexor Length

4 bytes
float
Flexor Falloff

12 bytes
float triple
Extensor

4 bytes
float
Extensor Strength

4 bytes
float
Extensor Width

4 bytes
float
Extensor Length

4 bytes
float
Extensor Falloff

'Lght' (Light Chunk)

Chunk type: 'Lght'
Major version: 0

Minor version: 7

The light chunk consists of the following:

Chunk Header

Name

Local Axes

Current Position

Light parameters

ASCII format:

"\n%s %s"

- light type, cast shadows

light type can be one of the following: “Infinite”, “Local”, “Spot”

if minor version > 4: three additional light types added “Projector”, “Sky”, “Area”

cast shadows can be one of the following: “Shadows”, “NoShadows”

if cast shadows:

" %10s"

- shadow type

shadow type can be one of the following: “ShadowMap”, “MemoryMap”,

 “Raytraced”

if ShadowMap or MemoryMap:

" res %hd"

- shadow map resolution - possible values: low - 128,

 medium - 256, high - 512
if Minor version > 3

" sharp %hd"

- shadow map sharpness: possible values: low - 1,

 medium - 2, high – 3

if Minor version > 6

" quality %hd"

- shadow quality (number of samples taken to

evaluate shadows)

"\ncolor %g,%g,%g cone angle %g inner angle %g falloff %hd"

- normalized RGB color of the light, angle illuminated

 by the light (in degrees), hot spot angle of the light,

 falloff.

Possible values for falloff: constant falloff - 0, linear

falloff - 1, squared falloff – 2

if Minor version > 4

"\nProject: %d%s"
- the length of the string specifying the pathname + the string specifying the name of the projector image. If the light is not a projector light than the length of the string is set to 0 and empty string is written.

if Minor version > 6

"\nSkyType: %d"

- type of the sky light:

1 – overcast sky

2 – clear sky

4 – intermediate sky
Binary format:

Size
Type
Description

2 bytes
short
light type (1-infinite, 2-local, 4-spot, 8-projector light, 16-area)

2 bytes
short
cast shadows (1 – shadows, 0 – no shadows)

if cast shadows:

2 bytes
short
shadow type (1 - ray traced, 2 – shadow map, 4 – memory map)

if ShadowMap or MemoryMap:

2 bytes
short
shadow map resolution

if Minor version > 3

2 bytes
short
shadow map sharpness (1 - low, 2 – medium, 3 – high)

if Minor version > 6

2 bytes
short
shadow quality (1 – 9 range) – number of samples taken to evaluate the shadow

12 bytes
float
normalized RGB color of the light

4 bytes
float
angle illuminated by the light (in degrees)

4 bytes
float
hot spot angle of the light (in degrees)

2 bytes
short
falloff (0 - constant falloff , 1 - linear falloff, 2 – squared falloff)

if Minor version > 4

2+length
string
Pathname of projector map file (see Strings section)

if Minor version > 6

2 bytes
short
Sky type: 1 – overcast, 2 – clear, 4 – intermediate

'Mat1' (Material Chunk)

Chunk type: 'Mat1'
Major version: 0

Minor version: 6

The material chunk consists of the following:

Chunk Header

Material data

Environment map data (optional)

Texture map data (optional)

Bump map data (optional)

The material data contains the shader type, facet type, color (red, green, blue), and some shader attributes: opacity (alpha), ambient coefficient (ka), specular coefficient (ks), hilight size coefficient (exp), and index of refraction (ior). It also contains a material number. All material chunks have a parent chunk and the material number identifies which child material this is. For instance if a material chunk has material number 2 and its parent is a 'PolH' or polygonal chunk, then this is material number 2 of that chunk and all faces which have their material id set to 2 in the 'PolH' chunk should use this material.

ASCII format:

"\nmat# %d"

- material number

"\nshader: %s facet: %s"
"\nrgb %g,%g,%g"

- material color

"\nalpha %g ka %g ks %g exp %g ior %g"
Current possibilities for the shader field are: "flat", "phong" and "metal".

Current possibilities for the facet field are: "faceted", "auto%d", and "smooth". The autofacet choice contains a value for the autofacet angle. Thus autofacet with an angle of 45 degrees would be "auto45".

Binary format:

Size
Type
Description

2 bytes
short
Material number

1 byte
char
Shader type ('f'-flat, 'p'-phong, 'm'-metal)

1 byte
char
Facet type ('f'-faceted, 'a'-autofacet, 's'-smooth)

1 byte
char
Autofacet angle (0 - 179 degrees)

4 bytes
float
Red component of color (0.0 - 1.0)

4 bytes
float
Green component of color (0.0 - 1.0)

4 bytes
float
Blue component of color (0.0 - 1.0)

4 bytes
float
Opacity (0.0 - 1.0)

4 bytes
float
Ambient coefficient (0.0 - 1.0)

4 bytes
float
Specular coefficient (0.0 - 1.0)

4 bytes
float
Hilight size coefficient (0.0 - 1.0)

4 bytes
float
Index of refraction

If environment map data is present then it starts with an identifying field, the full pathname of the environment map file, and a set of flags. The flags for environment maps are:

#define ENVR_CUBIC
0x01
// (bit 0)

#define ENVR_USE

0x02
// (bit 1)

The ENVR_USE flag is always set. The ENVR_CUBIC flag is set to indicate that the environment map is a cubic map, otherwise its assumed to be a spherical environment map.

ASCII format:

"\nenvironment: %d%s"
 - length of the string + full pathname of environment file

"\nflags %d"

Binary format:

Size
Type
Description

2 bytes
chars
Environment map data identifier ('e:')

1 byte
char
Environment map flags

2+length
string
Pathname of environment map file (see Strings section)

If texture map data is present then it starts with an identifying field, the full pathname of the texture map file, an offset in U and V, the number of times to repeat the texture map in U and V, and a set of flags. The flags for texture maps are:

#define TXTR_OVERLAY
0x01
// (bit 0)

#define TXTR_USE

0x02
// (bit 1)

The TXTR_USE flag is always set. If TXTR_OVERLAY flag is set then the object's color will show through where the texture map is at least partially transparent. Otherwise the object will be genuinely transparent in those areas.

ASCII format:
"\ntexture: %d%s"
- length of the string + full pathname of texture file

"\noffset %g,%g repeats %g,%g flags %hd"
Binary format:

Size
Type
Description

2 bytes
chars
Texture map data identifier ('t:')

1 byte
char
Texture map flags

2+length
string
Pathname of texture map file (see Strings section)

4 bytes
float
U offset for texture map

4 bytes
float
V offset for texture map

4 bytes
float
Number of times to repeat texture map in U direction

4 bytes
float
Number of times to repeat texture map in V direction

If bump map data is present then it starts with an identifying field, the full pathname of the bump map file, an amplitude for the bump map, an offset in U and V, the number of times to repeat the bump map in U and V, and a set of flags. The flags for bumps maps are:

#define BUMP_USE

0x02
// (bit 1)

The BUMP_USE flag is always set.

ASCII format:

"\nbump: %d%s"

- length of the string + full pathname of bump file

"\noffset %g,%g repeats %g,%g amp %g flags %hd"

Binary format:

Size
Type
Description

2 bytes
chars
Bump map data identifier ('b:')

1 byte
char
Bump map flags

2+length
string
Pathname of bump map file (see Strings section)

4 bytes
float
U offset for bump map

4 bytes
float
V offset for bump map

4 bytes
float
Number of times to repeat bump map in U direction

4 bytes
float
Number of times to repeat bump map in V direction

4 bytes
float
Relative amplitude of bump map

'Mbal' (Metaballs Chunk)

New for trueSpace3.

Chunk type: 'Mbal'
Major version: 0

Minor version: 5

The metaball object must have a following structure:

metaball description (saved as ‘Mbal’ chunk). It has two children

- group object (saved as a ‘Grou’ chunk) - contains metaball primitives as children

 (each primitive stores as ‘PolH’ chunk). Note that hierarchy of primitives is also supported.

- metaball skin (metaball object as a polyhedron - stored as ‘PolH’ chunk).

Each metaball primitive must be of one of the following types:

1. sphere

- polyhedron with 114 vertices

2. rounded cylinder
- 130 vertices

3. rounded cube

- 148 vertices

4. cube

- 8 vertices

5. cylinder

- 32 vertices

The Metaballs chunk consists of the following:

Chunk Header

Name

Local Axes

Current Position

Metaballs data

Radiosity quality

ASCII format: (supported only in version 4)

"\nMetaball flags: %hd"

- not used - should be set to 0
"\nPrimitives: %hd"

- number of metaball primitives
"\nMB volumes:"

- volume of influence for each primitive

for each primitive

"\n%f"

"\nUV projection: %hd”

- type of UV projection used (1-planar mapping,

 4-cylindrical mapping, 8-spherical mapping)
"\ncenter %g %g %g"

- position (local axes) for UV mapping object

"\nx axis %g %g %g"

"\ny axis %g %g %g"

"\nz axis %g %g %g"

"\nRadiosity Quality: %d"
- per object radiosity quality setting for metaball object

Binary format:

Size
Type
Description

2 bytes
short
metaballs flags

if minor version >= 3

2 bytes
short
number of metaball primitives

4 bytes each
float
volume of influence for every primitive

if minor version >= 4

2 bytes
short
UV projection type (1-planar,4-cylindrical,8-spherical)

48 bytes
float
position information for UV mapping object (see desc. for local axes)

if minor version >= 5

2 bytes
short
per object radiosity quality setting

'MRec' (Material Rectangle Chunk)

Chunk type: 'MRec'
Major version: 0

Minor version: 1

The chunk contains information about material rectangle - basically material rectangle defines a rectangle in the UV space of the object which is painted by a different material. Material rectangle is considered to be an object in the scene - it can have linked children (e.g. material of the material rectangle)

ASCII format:

"\nFlags %ld U %g,%g V %g,%g"
- material rectangle flags (always 0) and UV

 coordinates - Umin, Umax, Vmin, Vmax

Binary format:

Size
Type
Description

4 bytes
long
material rectangle flags (always 0)

16 bytes
float
UV coordinates of the material rectangle - Umin, Umax, Vmin, Vmax

'Nail' (Nail Chunk)

New for trueSpace3

Chunk type: 'Nail'
Major version: 0

Minor version: 2

The nail chunk consists of the following:

Chunk Header

Name

Local Axes

Current Position

Degrees of Freedom

Nailed Object

The Degrees of Freedom consists of the specification of degrees of freedom of the nail. Not used for 4.0.

ASCII format:
"\nDoF %hx"

- gives a set of degrees of freedom. (0 for 4.0)
Binary format:

Size
Type
Description

2 bytes
short
Set of degrees of freedom

The Nailed Object is the name the object that is immobilized by the nail in the Inverse Kinematics object. The nail chunk has to have the parent (the nail is a part of the articulated object), and the name of the nailed object is represented by the name inside of the articulated object.

ASCII format:

"\nobject %s"

Binary format:

Size
Type
Description

2+length
string
Name of object

'Nurb' (NURB object Chunk)

New for trueSpace4.

Chunk type: 'Nurb'
Major version: 0

Minor version: 6

The Nurb chunk consists of the following:

Chunk Header

Name

Local Axes

Current Position

Face list

NURB object has to have at least following two children:

- control mesh (NMes chunk representing control mesh)

- refined control mesh (NRMs chunk representing refined control mesh)

All data fields (in ASCII and Binary format too) in Nurb chunk have same meaning as corresponding fields in PolH chunk.

'NMes' (Control mesh of NURB object Chunk)

New for trueSpace4.

Chunk type: 'NMes'
Major version: 0

Minor version: 6

The NMes chunk consists of the following:

Chunk Header

Name

Local Axes

Current Position

Local Vertex list

UV Vertex list

Face list

Control mesh data

All data field except ‘Control mesh data’ field have same meaning as in PolH chunk.

Control mesh data contains the following information:

tensions for every vertex of control mesh

UV projection type (1 – planar, 4 – cylindrical, 8 – spherical, 16 – cubic).

ASCII format:

"\nTensions :"

for each vertex of control mesh:

“\n%f”

- tension parameter for vertex of control mesh

"\nUV projection: %hd"

- type of UV projection

Binary format:

Size
Type
Description

4 bytes

each
float
tension in vertex of control mesh

2 bytes
short
UV projection type (1-planar,4-cylindrical,8-spherical, 16 – cubic)

'NRMs' (Refined control mesh of NURB object Chunk)

New for trueSpace4.

Chunk type: 'NRMs'
Major version: 0

Minor version: 6

The NRMs chunk consists of the following:

Chunk Header

Refined control mesh data

Refined control mesh data contains the following information:

densities for every vertex of refined control mesh

Number of vertices of refined control mesh is given by sum of number of vertices of all faces of control mesh (for example: for cube as control mesh it is 24).

ASCII format:

"\nDensities :"

for each vertex of refined control mesh:

“\n%f”

- density parameter for vertex of refined control mesh

Binary format:

Size
Type
Description

4 bytes

each
float
density in vertex of refined control mesh

'OPar' (Plastiform Chunk)

New for trueSpace3.

Chunk type: 'OPar'
Major version: 0

Minor version: 4

The Plastiform chunk consists of the following:

Chunk Header

Name

Plastiform data (see below)

Radiosity quality

Local Axes

Current Position

Plastiform object has to have at least following two children:

- polyhedron (PolH chunk representing mesh) - indicated by OPPl chunk linked as

 a child

- polyhedron (PolH chunk representing deformation tool) - indicated by OPDf

 chunk linked as a child

Plastiform data contains the following information:

particle spacing, number of vertices, number of faces, allocated memory, particles information (position, normal, flag for movement, number of neighborhood vertices, number of neighborhood faces, list of neighboring vertices , list of neighboring faces.

ASCII format:

"\nParticle spacing %ld"

"\nNumber of vertecies"

"\nNumber of face %ld "

"\nLast vertex %ld "

"\nParticles informations"

// information about particles

for each particle:

"\n %g %g %g"
// particle position

"\n %g %g %g "
// particle normal

"\n %hd "

// flag whether particle can be moved (particles on the edge of the modified area

 cannot be moved to keep continuity with the rest of the surface (-1 - cannot be

 moved, 0 - can be moved, 1 - moved already-used for refresh).

"\n %hd "

// number of neighboring vertices

"\n %hd "

// number of neighboring faces

 for each neighboring vertex

 "\n %ld"
// index of neighboring vertex

 for each neighboring face

 "\n %ld"
// index of neighboring face

if minor version >= 4

"\nRadiosity Quality: %d"
- per object radiosity quality setting for metaball object

Binary format:

Size
Type
Description

4 bytes
long
Particle spacing

4 bytes
long
Number of vertices

4 bytes
long
Number of faces

*4 bytes
long
Allocated memory

12 bytes each
float triples
X, Y, and Z coordinates for each particle vertex

12 bytes each
float triples
X, Y, and Z coordinates for each particle normal

2 bytes
short
flag whether particle can be moved

2 bytes
short
number of neighboring vertices

2 bytes
short
number of neighboring faces

4 bytes each
long
indices of neighboring vertices

4 bytes each
long
indices of neighboring faces

if minor version >= 4

2 bytes
short
per object radiosity quality setting

'OPDf' (Plastiform deform tool Chunk)

New for trueSpace3.

Chunk type: 'OPDf'
Major version: 0

Minor version: 4

This chunk indicates that its parent is a deformation tool for Plastiform.

The Plastiform deform tool chunk consists of the following:

Chunk Header

Local Axes

Current Position

Minor version incremented to 4 but no changes to the chunk itself.

'OPPl' (Plastiform mesh Chunk)

New for trueSpace3.

Chunk type: 'OPPl'
Major version: 0

Minor version: 4

This chunk indicates that its parent is a Plastiform mesh object.

The Plastiform mesh chunk consists of the following:

Chunk Header

Local Axes

Current Postion

Minor version incremented to 4 but no changes to the chunk itself.

‘PANT’ (3Dpaint chunk)

New for trueSpace3.

Chunk type: 'PANT'
Major version: 0

Minor version: 1

This chunk stores information about 3D paint associated with the parent object.

Sorry, no ASCII support for now.

Size
Type
Description

2 bytes
short
internal flag - set to check whether the object was 3dpainted

(1 if 3Dpainted, 0 otherwise)

4 bytes

each
long
number of textures saved with the object after 3dpainting

4bytes

each
long
Internal count for the number of textures created during 3dpaint

4 bytes
long
number of UV values stored in the object

2 +length
string
prefix used to store the texture name

4 bytes
long
number of faces in the object

'Path' (Path Chunk)

Chunk type: 'Path
Major version: 0

Minor version: 1

The chunk contains top level information about path object. The path chunk consists of the following:

Chunk Header

Name

Local Axes

Current Position

'PhAn' (Physics object's chunk)

New for trueSpace3.
Chunk type: 'PhAn'
Major version: 0

Minor version: 4

The physics object can be attached to Polyhedron or Group object only (group object must contain at least one Polyhedron). Each of them can contain only one physics object and the physics object must be a child of the top of the object’s hierarchy.

The Physics chunk consists of the following:

Chunk Header

Physics data

ASCII format:

"\nCentreOfGravity %g %g %g"
- position of the center of gravity (worlds coordinate X,Y,Z)
"\nInitMotion %g %g %g"

- initial motion vector (objects coordinate X,Y,Z)
"\nInitRorationOrig %g %g %g"
- initial rotation vector - origin (objects coordinate X,Y,Z)
"\nInitRorationVect %g %g %g"
- initial rotation vector (objects coordinate X,Y,Z)
"\nAccMotion %g %g %g"

- acceleration motion vector (objects coordinate X,Y,Z)
"\nAccRorationOrig %g %g %g"
- acceleration rotation vector - origin (objects coordinate

 X,Y,Z)
"\nAccRorationVect %g %g %g"
- acceleration rotation vector (objects coordinate X,Y,Z)
"\nWeight %g"

- mass of the object (must be greater than 0)
"\nElasticity %g"

- elasticity of the object (should be between 0 and 2)
"\nEnviResist %g"

- objects environment resistance (should be >= 0)
 next line (friction) only if minorVersion > 2

"\nFriction %g"

- objects friction (from interval <0, 1>)

"\nActive %ld"

- flag of active objects resources:

0x0001
- center of gravity is active (always)

0x0004
- fixed points are active

0x0008
- initial motion vect. is active

0x0010
- initial rotation vect. is active

0x0020
- acc. motion vect. is active

0x0040
- acc. rotation vect. is active

0x0100
- active buoyancy

0x0200
- rotate initial speeds with object

0x0400
- rotate acceleration speeds with object

0x0800
- enable collisions of the objects

if minor Version is <= 2 the active flag should be: ACTIVE |= 0x0400

if minor Version is <= 3 the active flag should be: ACTIVE |= 0x0800

"\nNumFxPoints %ld"

- number of fixation points (from 0 to 2)

next 3 lines depend from number of fixation point (if number=0 the chunk is finished here)

"\nFxPoint %g %g %g"
- position of fixation point (object coordinate X,Y,Z)
"\nFxJoint %ld"

- pointer to second joint (fix. point)-not used, should be set to 0
"\nFxType %ld"

- type of fixation point (should be set to 0x0001)

Binary format:

Size
Type
Description

12 bytes
float triple
center of gravity position (worlds coordinate X,Y,Z)

12 bytes
float triple
initial motion vector (objects coordinate X,Y,Z)

12 bytes
float triple
initial rotation vector - origin (objects coordinate X,Y,Z)

12 bytes
float triple
initial rotation vector (objects coordinate X,Y,Z)

12 bytes
float triple
acceleration motion vector (objects coordinate X,Y,Z)

12 bytes
float triple
acceleration rotation vector - origin (objects coordinate X,Y,Z)

12 bytes
float triple
acceleration rotation vector (objects coordinate X,Y,Z)

4 bytes
float
mass of the object (must be greater than 0)

4 bytes
float
elasticity of the object (should be between 0 and 2)

4 bytes
float
objects environment resistance (should be >= 0)

next line (friction) only if minorVersion > 2

4 bytes
float
objects friction (from interval <0, 1>)

4 bytes
long
flag of active objects resources (see ASCII format)

4 bytes
long
number of fixation points (from 0 to 2)

next 3 lines depend from number of fixation point (if number=0 the chunk is finished here)

12 bytes
floats
position of fixation point (object coordinate X,Y,Z)

4 bytes
long
pointer to second joint (fixation point)-not used, should be set to 0

4 bytes
long
type of fixation point (should be set to 0x0001)

'PhAS' (Physics scenes's chunk)

New for trueSpace3.
Chunk type: 'PhAS'
Major version: 0

Minor version: 3

The Physics scene chunk consists of the following:

Chunk Header

Physics scene data

ASCII format:

"\nAtmosphereThin %ld"

- atmosphere thinning (should be from 0 to 400)

if minor Version <= 2 then tl/=10 (for input)

"\nAtmosphDen %g"

- atmosphere density (should be greater than 0)

"\nGravConst %ld"

- gravitation constant (should be greater than 0)

(multiplied by 100 and saved as long - default 981)

"\nPhysSceneAttr %ld"

- scenes physics attributes

0x0002 - set truespace grid as a gravitation pad

0x0004 - autorewind after end of simulation

0x0008 - constant delta time is enabled

0x0010 - delete script when sim. is started

0x0080 - atmosphere is enabled
"\nPhysSceneDraw %ld"

- only for wiredraw mode:

1 - draw only selected object

2 - draw whole scene
"\nConstantFrameRate %ld"
- number of simulation frames per one keyframe
if minor Version > 2

"\nSimulationTime %ld"

- simulation time in seconds (must me greater than 0)

"\nVisibleRes %ld"

- visibility of physics resources

0x0001 - invisible

0x0002 - visible only if object is selected

0x0004 - visible
Binary format:

Size
Type
Description

4 bytes
long
atmosphere thinning (should be from interval <0, 400>)

if minor Version <= 2 then tl/=10 (for input)

4 bytes
float
atmosphere density (should be greater than 0)

4 bytes
long
gravitation constant (should be greater than 0)

(multiplied by 100 and saved as long - default 981)

4 bytes
long
scenes physics attributes (see ASCII format for description)

4 bytes
long
only for wiredraw mode (1 - draw only selected object, 2 - draw whole scene)

4 bytes
long
number of simulation frames per one keyframe

if minor Version > 2

Size
Type
Description

4 bytes
long
simulation time in seconds (must me greater than 0)

4 bytes
long
visibility of physics resources (see ASCII format for description)

'PhWd' (Physics wind's chunk)

New for trueSpace3.
Chunk type: 'PhWd'
Major version: 0

Minor version: 2

The Physics Wind chunk consists of the following:

Chunk Header

Local Axes

Current Position

Wind data

ASCII format:

"\nWindFlags %ld"

- winds attributes

0x0000 - wind object is inactive

0x0001 - wind object is active

0x0002 - wind is global

0x0004 - wind is local

Binary format:

Size
Type
Description

4 bytes
long
winds attributes (see ASCII format for description)

Note:

Scene can contain only one global wind. Number of local winds is not limited.

'PolH' (Polygonal Data Chunk)

Chunk type: 'PolH'
Major version: 0

Minor version: 6

New for trueSpace4

The polygonal data chunk consists of the following:

Chunk Header

Name

Local Axes

Current Position

Local Vertex list

UV Vertex list

Face list

Additional flags
New for trueSpace4

The Local Vertex list is a list of 3D positions in the local coordinate space defined by this chunk’s Current Position (see appropriate section). It consists of a count of the number of vertices followed by the vertices. Each vertex consists of three floats for the X, Y, and Z values.

ASCII format:

"\nWorld Vertices %ld"
- gives number of local vertices following (>= 0)

for each local vertex:

"\n%f %f %f"

Binary format:

Size
Type
Description

4 bytes
long
Number of local vertices

12 bytes each
float triples
X, Y, and Z coordinates for each local vertex.

The UV Vertex list is a list of UV (texture) positions. It consists of a count of the number of UV vertices followed by the UV vertices. Each UV vertex consists of two floats for the U and V values.

ASCII format:
"\nTexture Vertices %ld"- gives number of UV vertices following (>= 0)

for each UV vertex:

"\n%f %f"

Binary format:

Size
Type
Description

4 bytes
long
Number of UV vertices

8 bytes each
float pairs
U and V coordinates for each UV vertex.

The Face list is a list of faces and holes. Each face has a set of flags, a material number, a count of the number of face vertices, and a list of face vertices. Each hole has a count of the number of faces vertices it contains followed by the face vertices. The hole should be interpreted as being a hole in the most recently read face. Each face vertex consists of two integers; these are an index into the local Vertex list followed by an index into the UV Vertex list.

ASCII format:

"\nFaces %ld"

- gives the number of faces following (>=0)

for each face:

either: "\nFace verts %hd flags %hd mat %hd"
or: "\nHole verts %hd"
for each face vertex in the face or hole

"<%ld,%ld> "
Binary format:
Size
Type
Description

4 bytes
long
Number of faces and holes

?
?
Faces and holes

A face is:

Size
Type
Description

1 bytes
byte
Flags byte (F_HOLE flag is not set)

2 bytes
short
Number of vertices in face (not including any holes)

2 bytes
short
Material index for face

8 bytes each
long pairs
Face vertices. Each consists of a long index in the local Vertex list followed by a long index into the UV Vertex list

A hole is:

Size
Type
Description

1 bytes
byte
Flags byte (F_HOLE flag is set)

2 bytes
short
Number of vertices in face (not including any holes)

8 bytes each
long pairs
Face vertices. Each consists of a long index in the local Vertex list followed by a long index into the UV Vertex list

There are two flags currently defined for faces:

#define F_HOLE

0x08
// (bit 3)

#define F_BACKCULL
0x10
// (bit 4)

The F_HOLE flag is used to distinguish holes from faces in the binary format. The F_BACKCULL flag means that this face should not be displayed if it's facing away from the camera or view. This flag is currently only used on two dimensional objects, where the front and back face of an object occupy the same space.

The normal of a face is obtained by using the right hand rule. Some operations like quad-divide will only work on objects which trueSpace considers to be solids. For an object to be solid, the number of faces in an object minus two must equal the number of vertices plus the number of edges. In addition each edge must be shared by exactly two faces. Thus when a flat polygon is created in trueSpace, it is represented by two polygons; one facing up and one facing down.

Additional flags were added after the face list:

New for trueSpace4
ASCII format:

"\nDrawFlags %ld"- object‘s draw flag (only for realtime renderers)

0x01 – draw object as solid

0x02 – draw object as transparent

0x04 – draw object as wire

0x08 – draw only object’s box

0x10 – hide object

“\nRadiosity Quality: %d” – value defining the radiosity quality setting for particular object

Binary format:

Size
Type
Description

4 bytes
Long
Object’s draw flag

2 bytes
Short
Radiosity quality setting

'PrTx' (Procedural Texture Chunk)

Chunk type: 'PrTx'
Major version: 0

Minor version: 1

The procedural texture chunk consists of the following:

Chunk Header

Material data

Environment map data (optional)

One of Granite, Marble or Wood data (optional)

Bump map data (optional)

The procedural texture chunk is very similar to the material chunk. If a material is to be procedurally textured, then this chunk will appear instead of a 'Mat1' chunk. The only difference between the two chunks is that where a 'Mat1' has an optional texture map specification, the 'PrTx' chunk has an optional Granite, Marble or Wood texture specification. Other than this, everything else is the same. Please see the material chunk description above for information about all chunk elements except the Granite, Wood and Marble data. The RST solid texture coordinates are based on each object's untransformed world vertices.

If Granite data is present then it begins with and identifying field, four RGBA colors, four contribution amounts (one for each color), sharpness, R, S and T scale values and a seed value.

ASCII format:

"\ngranite:"

"\nrgba1 %g,%g,%g,%g rgba2 %g,%g,%g,%g"

"\nrgba3 %g,%g,%g,%g rgba4 %g,%g,%g,%g"

"\namount1 %g amount2 %g amount3 %g amount4 %g"

"\nsharpness %g scale %g,%g,%g seed %hd"

Binary format:

Size
Type
Description

2 bytes
chars
Granite texture data identifier ('g:')

1 byte
char
Reserved (set to 0 for now)

4 bytes
float
Color 1 red (0.0 - 1.0)

4 bytes
float
Color 1 green (0.0 - 1.0)

4 bytes
float
Color 1 blue (0.0 - 1.0)

4 bytes
float
Color 1 alpha (0.0 - 1.0)

4 bytes
float
Color 2 red (0.0 - 1.0)

4 bytes
float
Color 2 green (0.0 - 1.0)

4 bytes
float
Color 2 blue (0.0 - 1.0)

4 bytes
float
Color 2 alpha (0.0 - 1.0)

4 bytes
float
Color 3 red (0.0 - 1.0)

4 bytes
float
Color 3 green (0.0 - 1.0)

4 bytes
float
Color 3 blue (0.0 - 1.0)

4 bytes
float
Color 3 alpha (0.0 - 1.0)

4 bytes
float
Color 4 red (0.0 - 1.0)

4 bytes
float
Color 4 green (0.0 - 1.0)

4 bytes
float
Color 4 blue (0.0 - 1.0)

4 bytes
float
Color 4 alpha (0.0 - 1.0)

4 bytes
float
Amount of color 1 (0.0 - 1.0)

4 bytes
float
Amount of color 2 (0.0 - 1.0)

4 bytes
float
Amount of color 3 (0.0 - 1.0)

4 bytes
float
Amount of color 4 (0.0 - 1.0)

4 bytes
float
Sharpness (0.0 - 1.0)

4 bytes
float
R scale (0.0 - 10.0)

4 bytes
float
S scale (0.0 - 10.0)

4 bytes
float
T scale (0.0 - 10.0)

2 bytes
short
Seed (1 - 32767)

If Marble data is present then it begins with an identifying field, stone color and alpha, vein color and alpha, sharpness, R, S and T scale values, turbulence, grain axis, and a seed value. The grain axis is one of the following selections:

#define PROC_GRAIN_R
0x01
// (bit 1)

#define PROC_GRAIN_S
0x02
// (bit 2)

#define PROC_GRAIN_T
0x04
// (bit 3)

ASCII format:

"\nmarble:"

"\nstonergba %g,%g,%g,%g veinrgba %g,%g,%g,%g"

"\nsharpness %g scale %g,%g,%g"

"\nturbulence %hd grain %hd seed %hd"

Binary format:

Size
Type
Description

2 bytes
chars
Marble texture data identifier ('m:')

1 byte
char
Reserved (set to 0 for now)

4 bytes
float
Stone color red (0.0 - 1.0)

4 bytes
float
Stone color green (0.0 - 1.0)

4 bytes
float
Stone color blue (0.0 - 1.0)

4 bytes
float
Stone color alpha (0.0 - 1.0)

4 bytes
float
Vein color red (0.0 - 1.0)

4 bytes
float
Vein color green (0.0 - 1.0)

4 bytes
float
Vein color blue (0.0 - 1.0)

4 bytes
float
Vein color alpha (0.0 - 1.0)

4 bytes
float
Sharpness (0.0 - 1.0)

4 bytes
float
R scale (0.0 - 10.0)

4 bytes
float
S scale (0.0 - 10.0)

4 bytes
float
T scale (0.0 - 10.0)

2 bytes
short
Vein turbulence (1 - 10)

2 bytes
short
RST grain flag (see above)

2 bytes
short
Seed (1 - 32767)

If Wood data is present then it begins with an identifying field, spring and summer wood RGBA colors, ratio of spring to summer wood, ring density, ring width variation, ring shape variation, R, S and T center for wood rings, R, S and T scale, grain axis and a seed value. See the Marble description for information about the grain axis. Note that the RST center values are not presently exposed in the trueSpace2 user interface and should be set to (1.0, 1.0, 1.0).

ASCII format:

"\nwood:"

"\nspringrgba %g,%g,%g,%g summerrgba %g,%g,%g,%g"

"\nldratio %g rdensity %g rwidthvar %g rshapevar %g"

"\ncenter %g,%g,%g scale %g,%g,%g"

"\ngrain %hd seed %hd"

Binary format:

Size
Type
Description

2 bytes
chars
Wood texture data identifier ('w:')

1 byte
char
Reserved (set to 0 for now)

4 bytes
float
Spring wood color red (0.0 - 1.0)

4 bytes
float
Spring wood color green (0.0 - 1.0)

4 bytes
float
Spring wood color blue (0.0 - 1.0)

4 bytes
float
Spring wood color alpha (0.0 - 1.0)

4 bytes
float
Summer wood color red (0.0 - 1.0)

4 bytes
float
Summer wood color green (0.0 - 1.0)

4 bytes
float
Summer wood color blue (0.0 - 1.0)

4 bytes
float
Summer wood color alpha (0.0 - 1.0)

4 bytes
float
Spring to summer ratio (0.0 - 1.0)

4 bytes
float
Ring density (0.0 - 10.0)

4 bytes
float
Ring width variation (0.0 - 1.0)

4 bytes
float
Ring shape variation (0.0 - 1.0)

4 bytes
float
R ring center (set to 1.0)

4 bytes
float
S ring center (set to 1.0)

4 bytes
float
T ring center (set to 1.0)

4 bytes
float
R scale (0.0 - 10.0)

4 bytes
float
S scale (0.0 - 10.0)

4 bytes
float
T scale (0.0 - 10.0)

2 bytes
short
RST grain flag (see above)

2 bytes
short
Seed (1 - 32767)

'Rads' (Radiosity Options Chunk)

New for trueSpace4

Chunk type: 'Rads'
Major version: 0

Minor version: 1

The radiosity options chunk contains radiosity related settings:

ASCII format:

"\nRadiosity step %d"

- 4-lights only, 8-iterate

"\nRadiosity quality %d"
- quality settings 1-9

"\nRadiosity tone mapping %d"
- 0.1-10. represented in fixed point arithmetic as 1-1000

"\nRadiosity converged %d"
- 0%-100% convergence

"\nRadiosity render every %d"
- 0-1000 iterations during simulation needed to render a picture

Binary format:

Size
Type
Description

4 bytes
long
Step

4 bytes
long
Quality

4 bytes
long
Tone mapping

4 bytes
long
Convergence

4 bytes
long
Render every n-th step of iteration

'ROpt' (Render Options Chunk)

Chunk type: 'ROpt'
Major version: 0

Minor version: 5

New for trueSpace4

The render options chunk contains rendering settings:

ASCII format:

"\nRaytrace enable %d"

- ray tracing ON/OFF (1-on)
"\nResolution %x"

- render resolution (1 - window, 2 - user

 defined, 32 - preset)

"\nWidth %d"

- rendering width (in pixels)

"\nHeight %d"

- rendering height (in pixels)
"\nAntialias %x"

- antialias (1-none, 2-2x, 4-3x, 8-4x) "\nFramerate %x"

- framerate for rendering (1 - render all frames,

 2 - render every 2nd frame, 4 - render every 3rd
 frame, 8 - render every 5th frame, 16 - render

 every 10th frame)

"\nDepth %x"

- pixel depth for output (1-32 bits, 2-16 bits,

 4-15 bits, 8-8 bits, 16-4 bits)

"\nBase framerate %x"

- base frame rate (1 - 25 fps, 2 - 30 fps, 4 - 24

 fps)
"\nOptions %x"

- render options (0x01use background map,

 0x02-use fog, 0x04-use global environment

 map, 0x08-use global environment cubic map,

 0x10-use antialias, 0x40-use background

 movie, 0x80-use global environment movie,

 0x100-use raytracing, 0x200-begin frame

 numbers with 0)

"\nFlags %x"

- dithering (1-on, 2-off)

"\nFrame %x"

- frames to render (1-current fame only, 2-all

 frames, 4-selection of frames)

"\nJPEG quality %d"

- quality setting for JPEG compression

"\nFLIC flags %x"

- FLIC bit flags (0x01-universal color palette,

0x02-create palette for a first frame, 0x04-create palette for each frame separately, 0x08-dither)

"\nTarga flags %x"

- TARGA bit flags (0x01 - compress file)

"\nResolution preset %d"
- preset resolutions (0-720x480,1-720x486,

 2-720x576,3-768x576,4-320x200,

 5-320x240,6-352x240,7-352x288,

 8-384x288,9-640x480,10-704x480,

 11-704x576, 12-736x398, 13-256x192)

"\nDepth focus %d"

- depth focus distance

"\nFieldrender flags %x"
- field render flag (0x01-on, 0x02-off)

"\nMotionblur flags %x"

- motion blur flags (0x01-none, 0x02-low,

0x04-high, 0x08-depth of field off,

0x16- depth of field on)

"\nMotionblur frames %d"
- number of frames to render for motion blur

"\nPixel aspect %s"

- pixel aspect ratio

"\nFilename %s"

- name of the file to render to
"\nDepth focal dist %s"

- focal distance for depth of field

"\nMotionblur length %s"
- motion blur length

"\nRender AA %04x"

- anti-aliasing level (1-none, 2-2x, 4-3x, 8-4x)

"\nRay depth limit %d"

- ray trace pruning threshold

"\nMax ray depth %d"

- maximum depth of ray tree

"\nRender quality %d"
- quality of the rendering (1-wireframe,

2-hidden line, 8-low, 32-medium, 128-high)

"\nRender mode %d"

- rendering mode(1-scanline, 2-raycast)

"\nOptions2 %x"

- bit 1 – triangulate for rendering, bit 2 –

render single sided geometry

Binary format:

Size
Type
Description

4 bytes
long
ray tracing ON/OFF (1-on, 0 - off)

4 bytes
long
render resolution

4 bytes
long
width

4 bytes
long
height

4 bytes
long
antialias

4 bytes
long
frame rate

4 bytes
long
depth

4 bytes
long
base frame rate

4 bytes
long
options

4 bytes
long
flags

4 bytes
long
frame

4 bytes
long
JPEG quality

4 bytes
long
FLIC flags

4 bytes
long
Targa flags

4 bytes
long
Resolution presets

4 bytes
long
Depth focus

4 bytes
long
Field render flags

4 bytes
long
Motion blur flags

4 bytes
long
Motion blur frames

2+length
string
Pixel aspect ratio

2+length
string
Render filename

2+length
string
Depth focal distance

2+length
string
Motion blur length

4 bytes
long
Antialiasing level

4 bytes
long
Ray depth limit

4 bytes
long
Max ray depth

4 bytes
long
Rendering quality

4 bytes
long
Rendering mode

4 bytes
long
Options 2 (see ASCII format for details)

'SADf' (Stand-Alone Deformation Chunk)

Chunk type: 'SADf'
Major version: 1

Minor version: 0

The stand-alone deformation chunk consists of the following:

Chunk Header

Name

Local Axes

Current Position

'Scen' (Scene Chunk)

Chunk type: 'Scen'
Major version: 0

Minor version: 5

New for trueSpace4
The scene chunk consists of the following:

Chunk Header

Name of the scene

Name of the selected object

Scene background data (only for minor versions > 1)

Scene background data contains the following information: background color, background name, global environment color, global environment name, fog enable/disable, fog color, fog near and far clipping planes, total fog percentage and minimum reflectivity for ray traced reflection.

ASCII format:

"\nName %s"

- name of the scene
"\nSelected %250s"

- name of the selected object

"\nBackground rgba %g,%g,%g,%g"
- RGBA components of the

background (0.0 - 1.0)
"\nBackground name %s"

- Name of the background map
"\nGlobal env rgb %g,%g,%g"

- RGB components of the global

environment (0.0 - 1.0)
"\nGlobal env name %s"

- Name of the global environ. map
"\nFog enable %d rgb %g,%g,%g"
- fog enabled/disabled and RGB

components
"\nFog near %g far %g"

- fog near and far clipping distances

if minor version > 2
"\nFog max %g MinKS %g"

- for description see binary format

Binary format:

Size
Type
Description

2 bytes
short
Scene name dupecount

2+length
string
Scene name excluding dupecount

2+length
string
Name of the selected object (including dupecount)

16 bytes
float
RGBA components of the background (0.0 - 1.0)

2+length
string
Name of the background map

12 bytes
float
RGB components of the global environment (0.0 - 1.0)

2+length
string
Name of the global environment map

2 bytes
short
Fog enabled/disabled (1-enabled, 0-disabled)

12 bytes
float
RGB components of fog (0.0 - 1.0)

4 bytes
float
Fog near clipping distance

4 bytes
float
Fog far clipping distance

if minor version > 2

4 bytes
float
Attenuation of background pixels by fog (0.0 - 1.0)

4 bytes
float
minimum reflectivity for ray traced reflection (0.0 - 1.0)

'Scrp' (Script Chunk)

New for trueSpace4.

Chunk type: 'Scrp'
Major version: 0

Minor version: 1

This chunk stores information about script associated with the parent object.

Script flags have following meanings:

0x00000001
internal

0x00000002
scripts will be run automatically after scene is loaded

0x00000004
internal

0x00000008
internal

0x00000010
internal

ASCII format:

"\nFlags: %i"

- flags

"\nEnabled: %i"

- if a script is enabled

"\nSize: %i"

- script size

"\nScript: %s"

- script text

Binary format:

Size
Type
Description

4 bytes
long
script flags

4 bytes
long
Enabled

4+length
string
Script size and script

'Seff' (Scene Effects Chunk)

New for trueSpace4

Chunk type: 'Seff'
Major version: 0

Minor version: 7

Scene effects chunk contains information on foreground/background/postprocess shaders used and all their parameters.

ASCII format:

"\nForeground %d"
- foreground (1-none, 2-volumetric lights, 4-global environment map, 8-depth cue, 16-fog, 128-snow)
"\nBackground %d"
- background (1-color,2-clouds, 4-graduated, 128-image map)

"\nFog density %d"

- volumetric lights parameters
"\nSamples %d"

"\nNoise amplitude %d"

"\nNoise scale %d"

"\nNoise gain %d"

"\nSource attenuation %d"

"\nSurface attenuation %d

"\nVolume attenuation %d

"\nClouds scale %d"

- clouds parameters
"\nClouds detail %d"

"\nClouds background rgb %d,%d,%d"
- background color (RGB each 0-255)
"\nClouds color rgb %d,%d,%d"

- clouds color (RGB each 0-255)
"\nGraduated top rgb %d,%d,%d"
- graduated background params.
"\nGraduated bottom rgb %d,%d,%d"
- color (RGB each 0-255)
"\nDepth cue near %d"

- depth cue parameters
"\nDepth cue far %d"

"\nDepth cue rgb %d,%d,%d"

"\nFog distance %d"

- fog parameters
"\nFog height %d"

"\nFog density %d"

"\nFog type %d"

- 16-regular fog, 64-ground fog

"\nFog color rgb %d,%d,%d"

"\nSnow near scale %d"

- snow parameters
"\nSnow far scale %d"

"\nSnow flake size %d"

"\nSnow flake density %d"

"\nSnow noise amplitude %d"

"\nSnow noise scale %d"

"\nSnow flake rgb %d,%d,%d"

"\nPostprocess%d"

- 4 if lens flares on, otherwise 0
"\nLens flares intensity%d"

- lens flares parameters
"\nLens flares shape%d"

- 1-circle, 2-polygon, 4-arc
"\nLens flares glow radius%d"

"\nLens flares glow factor%d"

"\nLens flares glow focus%d"

"\nLens flares halo radius%d"

"\nLens flares halo factor%d"

"\nLens flares halo width%d"

"\nLens flares rays type%d"

- 1-none,2-random,4-regular,8-mixed

"\nLens flares rays count%d"

"\nLens flares rays factor%d"

"\nLens flares rays range%d"

"\nLens flares ghosts%d"

"\nLens flares ghosts factor%d"

"\nDepth of field focal length%d"
- depth of field parameters
"\nDepth of field units%d"

- always 1

"\nDepth of field aperture%d"

"\nDepth of field focus plane%d"

"\nDepth of field near blur%d"

"\nDepth of field far blur%d"

"\nDepth of field near focus%d"

"\nDepth of field far focus%d"

"\nDepth of field ignore background%d"

"\nTreshold%d"

- feature following antialiasing parameters
"\nSamples%d"

"\nEarly out%d"

"\nRelative sensitivity%d"

"\nEnable postprocess%d"
- 1 if enabled, 0 if disabled
Binary format:

Size
Type
Description

4 bytes
Long
Foreground shader

4 bytes
Long
Background shader

4 bytes
Long
Fog density

4 bytes
Long
Samples

4 bytes
Long
Noise amplitude

4 bytes
Long
Noise scale

4 bytes
Long
Noise gain

4 bytes
Long
Source attenuation

4 bytes
Long
Surface attenuation

4 bytes
Long
Volume attenuation

4 bytes
Long
Clouds scale

4 bytes
Long
Clouds detail

12 bytes
3*long
Clouds background RGB

12 bytes
3*long
Clouds color RGB

12 bytes
3*long
Graduated top RGB

12 bytes
3*long
Graduated bottom RGB

4 bytes
Long
Depth cue near

4 bytes
Long
Depth cue far

12 bytes
3*long
Depth cue RGB

4 bytes
Long
Fog distance

4 bytes
Long
Fog height

4 bytes
Long
Fog density

4 bytes
Long
Fog type

4 bytes
Long
Snow near scale

4 bytes
Long
Snow far scale

4 bytes
Long
Snow flake size

4 bytes
Long
Snow flake density

4 bytes
Long
Snow noise amplitude

4 bytes
Long
Snow noise scale

12 bytes
3*long
Snow flake color RGB

4 bytes
Long
Postprocess type

4 bytes
Long
Lens flares intensity

4 bytes
Long
Lens flares shape

4 bytes
Long
Lens flares glow radius

4 bytes
Long
Lens flares glow factor

4 bytes
Long
Lens flares glow focus

4 bytes
Long
Lens flares halo radius

4 bytes
Long
Lens flares halo factor

4 bytes
Long
Lens flares halo width

4 bytes
Long
Lens flares rays type

4 bytes
Long
Lens flares rays count

4 bytes
Long
Lens flares rays factor

4 bytes
Long
Lens flares rays range

4 bytes
Long
Lens flares ghosts

4 bytes
Long
Lens flares ghosts factor

4 bytes
Long
DOF focal length

4 bytes
Long
DOF units

4 bytes
Long
DOF aperture

4 bytes
Long
DOF focus plane

4 bytes
Long
DOF near blur

4 bytes
Long
DOF far blur

4 bytes
Long
DOF near focus

4 bytes
Long
DOF far focus

4 bytes
Long
DOF ignore background

4 bytes
Long
FFAA threshold

4 bytes
Long
FFAA samples

4 bytes
Long
FFAA early out

4 bytes
Long
FFAA relative sensitivity

4 bytes
Long
Enable postprocess

'SelF' (Selection Chunk)

New for trueSpace4

Chunk type: 'SelF'
Major version: 1

Minor version: 1

This chunk is written separately without parental chunk.

The bone chunk consists of the following:

Chunk Header

Object Name

Faces

Edges

Vertices

The Object Name is the name of a sub-object inside the hierarchical object or <Topobj> for top object.

ASCII format:

"\n%s"

Binary format:

Size
Type
Description

2+length
string
Name of Sub-object or <Topobj>

The Faces is a list of indices of selected faces.

ASCII format:

"\nFaces %ld :"
- number of faces following (>= 0)

for each face:

" %ld"

- an index of the face
Binary format:

Size
Type
Description

4 bytes
long
Number of Faces

?
?
Faces

A face is:

Size
Type
Description

4 bytes
long
Index of Face

The Edges is a list of indices of selected edges.

ASCII format:

"\nEdges %ld :"
- number of edges following (>= 0)

for each edge:

" %ld"

- an index of the edge
Binary format:

Size
Type
Description

4 bytes
long
Number of Edges

?
?
Edges

An Edge is:
Size
Type
Description

4 bytes
long
Index of Edge

The Vertices is a list of indices of selected vertices.

ASCII format:

"\nVertices %ld :"
- number of vertices following (>= 0)

for each vertex:

" %ld"

- an index of the vertex
Binary format:

Size
Type
Description

4 bytes
long
Number of Vertices

?
?
Vertices

A Vertex is:
Size
Type
Description

4 bytes
long
Index of Vertex

'ShBx' (Shaders Chunk)

New for trueSpace 4

Chunk type: `ShBx`

Major version: 1

Minor version: 0

The shaders chunk is a child of the material chunk (Mat1). It contains information of the material shaders that determine object surface.

shaders_chunk

chunk_header

shaders_data

shaders_data

color_shader_data

transparency_shader_data

reflectance_shader_data

displacement_shader_data

color_shader_data, transparency_shader_data, reflectance_shader_data, displacement_shader_data

particular_shader_data

ASCII format

particular_shader_data

shader_class_record

shader_name_record

number_of_param_record

shader_param_list_record
shader_class_record

format: "\nShader class: %s”, shader_class_name

shader_class_name

one of { “color”, “transparency”, “reflectance”, “displacement” }

type: zero terminated string

shader_name_record

format: “\nShader name: \"%s\" (%s)”, shader_name, shader_internal_name

shader_name (name of the shader user name - used to be displayed in the interface)
type: string

shader_internal_name (name of the shader used for identification of the shader - shader identifier)
type: string

number_of_param_record
format: "\nNumber of parameters: %d", number_of_param

number_of_param_record (number of shader parameters)

type: BYTE

range: [0, 255]

shader_param_list_record
one of {generic_param_list, layered_param_list}

generic_param_list

parameter_data

[shader_parameter_list]

parameter_data
format: "\n%s: %s " parameter_name, parameter_type

parameter_name (name of the parameter - parameter identification)
type: string

parameter_type

one of { "bool", "float", "double", "int", "point", "vector", "color", "string"}

type: string

parameter_value

one of { bool_value, int_value, float_value, double_value, point_value, vector_value, color_value, string_value }

bool_value, int_value
format: “%d”, value

float_value, double_value
format: “%g”, value

string_value
format: “\"%s\"”, value

point_value, vector_value
format: “(%g, %g, %g)”, value1, value2, value3

color_value
format: “(%d, %d, %d)”, value_red, value_green, value_blue

range: values lay in [0, 255]

layered_param_list
{
 format: “\nshader%d: shader %s\n”, i, validity_flagi
particular_shader_datai
format: “\nmix%d: %g", i, blending_valuei
} i = 1, ..., 8

validity_flag

one of {“yes”, “no”}

blending_value

type: float

range: [0, 100]

Binary format:

particular_shader_data

one of {generic_shader_data, layered_shader_data}

generic_shader_data

shader_class

shader_internal_name
number_of_param

param_list

layered_shader_data

shader_class

layered_shader_internal_name

layered_number_of_param

layered_param_list

layered_shader_internal_name

one of {“c_layers”, “r_layers”, “d_layers”}

type: string

size: 2 + length bytes

layered_number_of_param

24

type: const BYTE

size: 1 byte

layered_param_list

{

layered_namei

validity_flagi

generic_shader_datai

blending_param_namei

blending_valuei

}i = 1, ..., 8

layered_name

“shaderi”, i = 1, ..., 8

type: string

length: 2 + length bytes (= 9 bytes)

validity_flag (determines if a valid shader is attached to the layer; i.e. if the layer i is nonempty)

type: bool

length: 1 byte

blending_param_name
“mixi”, i = 1, ..., 8

blending_value (determines transparency of the layer: 0 – opaque, 100 – transparent layer)
type: float

size: 4 bytes

range: [0, 100]

shader_class (type of the shader)

one of { SHCLASS_COLOR = 0, SHCLASS_TRANSPARENCY = 1, SHCLASS_REFLECTANCE = 2, SHCLASS_DISPLACEMENT = 3)

type: BYTE

size: 1 byte

shader_internal_name (shader identifier)

type: string (see Strings section)
size: 2 + length bytes

number_of_param

type: BYTE
size: 1 byte if major version = 0

size: 4 byte if major version >= 1

param_list

{param_datai}i = 0, ..., n where n is number of shader parameters

param_data

param_name

param_type

param_value

param_name
type: string (see Strings section)

size: 2 + length bytes

param_type

one of { int = 1, float = 3, double = 4, bool = 6, color = 7, vector = 8, point = 9, shader = 11}

type: BYTE

size: 1 byte

param_value
one of {integer_value, float_value, double_value, bool_value, color_value, vector_value, point_value}

integer_value

type: int

size: 4 bytes

float_value

type: float

size: 4 bytes

double_value
type: double

size: 8 bytes

bool_value
type: bool

size: 4 bytes

color_value
color_value_red

color_value_green

color_value_blue

color_value_red, color_value_green, color_value_blue
type: float

size: 4 bytes

range: [0, 1]

vector_value

vector_value_x

vector_value_y

vector_value_z

vector_value_x, vector_value_y, vector_value_z

type: float

size: 4 bytes

point_value

vector_value
'Skin' (Skin Chunk)

New for trueSpace4

Chunk type: 'Skin'
Major version: 0

Minor version: 1

This chunk is written to the output file if the parent chunk contains the polyhedron attached to the skeleton. There is one chunk of this type per each muscle and tendon that deforms this polyhedron. The chunk specifies a name of a muscle or tendon (full name inside of the “bone” object) and a list of vertices of the polyhedron affected by specified muscle or tendon (Deformation).

ASCII format:

"\n%s\n Vertices %ld :"
- gives a name of a muscle or a tendon

- number of local vertices following (>= 0)

for each local vertex:

" %ld"

- an index of the vertex
Binary format:

Size
Type
Description

2+length
string
Name of muscle or tendon

4 bytes
long
Number of local vertices

?
?
Vertices

A Vertex is:
Size
Type
Description

4 bytes
long
Index of Vertex

'Unit' (Units Chunk)

Chunk type: 'Unit'
Major version: 0

Minor version: 1

This chunk informs about the units used locally to describe the parent object. Following values are supported:

MILLIMETERS

0

CENTIMETERS

1

METERS

2

KILOMETERS

3

INCHES

4

FEET

5

YARDS

6

MILES

7

POINTS

8

ASCII format:

"\nUnits %hd"

- units flag - see above for acceptable values

Binary format:

Size
Type
Description

2 bytes
short
units flag

'URL ' (URL Chunk)

New for trueSpace3.

Chunk type: 'URL '
Major version: 0

Minor version: 1

This chunk stores URL and its description associated with the parent object.

ASCII format:

"\nName %s\nDesc %s\nFlags %08x"
- URL, description, internal flags
Binary format:

Size
Type
Description

2+length
string
URL

2+length
string
description for the URL

4 bytes
long
internal flags

'VCol' (Vertex Colors Chunk)

Chunk type: 'VCol'
Major version: 1

Minor version: 0

This chunk contains the vertex colors data if vertices of the parent polyhedron were vertex painted.

ASCII format:

"\nNumber %ld"

- number of entries in the list (number of

 faces using painted vertices)

for each entry in the list:
"\nFace %ld Vertices %ld"
- face number and number of vertices in the

 face (face number points to parent’s list of

 faces - parent must be polyhedron written as

 ‘PolH’ chunk)
for each vertex:
" r%hd g%hd b%hd a%hd"

- RGBA colors of the vertex. RGB values <0,255>

 A - transparency value <0, 100>

 100means opaque color, 0 means

 completely transparent color

Binary format:

Size
Type
Description

4 bytes
long
number of entries in the list (number of faces using painted vertices)

for each entry in the list:

Size
Type
Description

4 bytes
long
face number (points to parent’s list of faces - parent must be ‘PolH’)

4 bytes
long
number of vertices in the face

number * 4 bytes
char
color of a particular vertex in RGBA form. RGB values <0,255>

A - transparency value <0,100> - 100 means opaque color, 0 means completely transparent color

'Vews' (Views Chunk)

Chunk type: 'Vews'
Major version: 0

Minor version: 5

support for following view types:

CVIEW_PERSP = 0,

CVIEW_TOP = 1,

CVIEW_FRONT = 2,

CVIEW_LEFT = 3,

CVIEW_CAMERA = 4,

ASCII format:

"\nNumviews %hd”

- number of views expected at read time

"\nSolidTexture %hx"

- texture mapping on/off

"\nSolidGrid %hx"

- solid grid on/off

"\nShowBack %hx"

- background on/off

“\nGridSizeX %hx"

- grid size x (from 2 to 40)

“\nGridSizeY %hx"

- grid size y (from 2 to 40)

- this is repeated Numviews times:

"\nActive view %hd"

- view type

"\nCalview %hd"

- view number

"\nPlacement %hx"

- was maximized?

"\nLeft %g top %g width %g height %g"
- window dimensions (in device

independent format)

"\nRender state %hx"

- view is shaded on/off

"\nGouraud state %hx"

- view is smooth/faceted

"\nTexture res %hx"

- view texture on/off

"\nGrid setting %hx"

- grid setting

0x01 – none

0x02 – wire

0x04 – solid

0x08 - textured

"\nDraw Flags %hx"

- default flag “draw object as”

0x01 – solid

0x02 – transparent

0x04 – hide

0x08 – wire

0x10 – transparent wire

0x20 – solid wire

this is repeated 5 times for each view (for view types in the following order: CVIEW_PERSP,CVIEW_TOP,CVIEW_FRONT, CVIEW_LEFT, CVIEW_CAMERA)

"\nEye flags %hx"

- set to 0 - no flags set

"\nEye units %hd"

- set to 2 - units = meters

"\nEye zoom %g ortho depth %g horiz %g,%g,%g"

- zoom factor used ONLY for an orthogonal eye. It is a scale

 factor for the cylinder to be rendered

- depth along eyes Z both + and - to render: all items outside this

 range will not be rendered. ONLY used if eye is orthogonal

- horizontal axis for tilting and banking (maintained by eye

 rotation etc.)

"\ncenter %g %g %g"
- local axes
"\nx axis %g %g %g"

"\ny axis %g %g %g"

"\nz axis %g %g %g"

Binary format:

Size
Type
Description

2 bytes
short
number of views expected at read time

2 bytes
short
texture mapping on/off

2 bytes
short
solid grid on/off

2 bytes
short
background on/off

2 bytes
short
grid size x

2 bytes
short
grid size y

- this is repeated Numviews times:

Size
Type
Description

2 bytes
short
view type

2 bytes
short
view number

2 bytes
short
was maximized?

12 bytes
4 float
window dimensions (in device independent format)

2 bytes
short
view is shaded on/off

2 bytes
short
view is smooth/faceted

2 bytes
short
view texture on/off

2 bytes
short
grid setting

2 bytes
short
default flag “draw object as”

this is repeated 5 times for each view (for view types in the following order: CVIEW_PERSP,CVIEW_TOP,CVIEW_FRONT, CVIEW_LEFT, CVIEW_CAMERA)

Size
Type
Description

2 bytes
short
eye flags - set to 0

2 bytes
short
units - set to 2 (for meters)

4 bytes
float
eye zoom factor (only for orthogonal eye)

4 bytes
float
ortho depth (only for orthogonal eye)

12 bytes
float triple
X, Y, Z coordinates for horizontal eye axis

12 bytes
float triple
X, Y, and Z coordinates for center of axes.

12 bytes
float triple
X, Y, and Z coordinates for direction of local X axis.

12 bytes
float triple
X, Y, and Z coordinates for direction of local Y axis.

12 bytes
float triple
X, Y, and Z coordinates for direction of local Z axis.

History

trueSpace4.2

modified chunks
“Came” (Camera Chunk)

“Chan” (Channel Chunk)

“Lght” (Light Chunk)

“Seff” (Scene Effects Chunk)

“ShBx” (Shaders Chunk)

trueSpace4.1

modified chunks

“Lght” (Light Chunk)

 “Ropt” (Render Options Chunk)

 trueSpace 4

added chunks
“Bone” (Bones Chunk)

“Knuc” (Knuckle Chunk)

“Nurb” (NURB object chunk)

“NMes” (Control Mesh of NURB Object Chunk)

“NRMs” (Refined Control Mesh of NURB Object Chunk)

“Rads” (Radiosity Options Chunk)

“Scrp” (Script Chunk)

“Seff” (Scene Effects Chunk)

“SelF” (Selection Chunk)

“ShBx” (Shaders Chunk)

“Skin” (Skin Chunk)

modified chunks

“Chan” (Channel Chunk)

“Lght” (Light Chunk)

“Mbal” (Metaballs Chunk)

“Nail” (Nail Chunk)

“OPar” (Plastiform Chunk)

“OPDf” (Plastiform Deform Tool Chunk)

“OPPl” (Plastiform Mesh Chunk)

“PolH” (Polygonal Data Chunk)

“ROpt” (Rendering Options Chunk)

“Scen” (Scene Chunk)

“Vews” (Views Chunk)

trueSpace 3.2

“ExtO” (External Object Chunk)

“ExtD” (External Data Chunk)

trueSpace 3.1

N/A

trueSpace3

“Audi” (Audio Chunk)

“Hidn” (Hidden Object Chunk)

“Join” (Joint Chunk)

“Mbal” (Metaballs Chunk)

“Nail” (Nail Chunk)

“OPar” (Plastiform Chunk)

“OPDf” (Plastiform Deform Tool Chunk)

“OPPl” (Plastiform Mesh Chunk)

“PANT” (3D Paint Chunk)

“PhAn” (Physics Object’s Chunk)

“PhAS” (Physics Scene’s Chunk)

“PhWd” (Physics Wind’s Chunk)

“URL “ (URL Chunk)

