The DVI Driver Standard, Level 0
The TUG DVI Driver Standards Committee

Abstract

The TUG DVI Driver Standard defines functional
and interface requirements for computer programs
(DVI processors) that read and translate files in the
DVI page description language. This document is
the subset of the DVI standard (level 0) applying to
minimally functional DVI processors. The specifica-
tions here should be considered a minimum require-
ment; developers are encouraged to write drivers ex-
ceeding these specifications.

(The version of the Level 0 Standard presented
here is draft 0.05. It has been reviewed by the TUG
DVI Driver Standards Committee and is now being
presented to the TUG membership at large for re-
view.)

The complete standard will be presented as a se-
ries of “tiers” requiring increasingly stringent con-
trol over the output of DVI processors.

1 Purpose of the level-0 standard

The level-0 standard (henceforth called standard)
is meant to be a base standard to which all DVI-
processing programs must adhere. It provides a base
level of support for both DVI-to-output-device trans-
lators (so called drivers) and DVI-to-DVI preproces-
sors (e.g., dviselect). The standard hereafter calls
such DVI-processing programs “DVI processors” or
just “processors.” This standard allows all reason-
able documents to be rendered (i.e., printed or dis-
played) accurately. When we refer to accurate ren-
dering, we mean that the when the data generated
by the DVI processor(s) are transmitted to a output
device the latter shall produce a page accurately de-
picting the page described by the DVI file (disregard-
ing resolution effects and output technology).

The basis for many of the specifications in this
standard is the possible output of TEX82 although
some requirements are based on assumptions that
cannot occur with TEX82-based output; functions
which can be implemented via a pre-processor are
generally omitted (e.g., page selection and sorting).

2 The DVI file

As a rule, DVI processors must be able to read
and interpret any valid DVI file as specified in ap-
pendix A. They shall also correctly render any DVI
file which falls within the following limits. If these
requirements cannot be met due to limitations of the
computer or the output device they shall be fulfilled
as completely as possible and the limitations docu-

mented. Aside from this exception, these specifica-
tions are a minimum; good processors will probably
be able to handle DVI files exceeding these limits
(DVI files which exceed the limits are likely to be
rare, but might still occur).

Explanation: This exception above is necessary be-
cause certain popular output devices have varying ca-
pacity depending on the amount of on-board memory or
similar conditions. For example, an HP LaserJet Plus
with 512 KB of memory is capable of holding in memory
only 3056 distinct downloaded characters; a full page
bitmap is also not possible with this configuration.

2.1 DVI commands

The DVI processor must be able to interpret every
DVI command listed in Appendix A.

Explanation: Some commands, e.g., putj, are gener-
ally used for conditions outside those enumerated below;
despite this, DVI-translating programs are expected to
accurately interpret these commands and execute them
if they do specify an action within the specified minimum
limits.

2.2 Characters
2.2.1 Number of characters in a font

The DVI processor must be able to handle fonts
which have characters at any code in the range
0 < c < 256.

Explanation: Some printers with download possibil-
ities will require fonts with more than a given number
of characters to be broken into two or more device fonts
when downloaded to the printer. Please note that this
requirement is not subject to the exception for device
limitations of section 2.

2.2.2 Character size

The DVI processor must be able to render any char-
acter up to a size of 600 pt (horizontal) by 800 pt
(vertical) unless this is not possible due to device
constraints as outlined in section 2.

Explanation: This size is the glyph size, not the size
given in the TFM files. These two sizes are not connected;
especially it’s important that the glyph might be outside
the bounding box given by the dimensions of the TFM
files.

2.2.3 Number of characters per page

The DVI processor must be able to render a page
containing as many as 20000 characters unless this
is not possible due to device constraints as outlined
in section 2.

2.2.4 Unusual characters

The DVI processor must correctly render (a) charac-
ters with empty bitmaps (e.g., the SLITEX fonts) in-
cluding characters whose horizontal escapement is 0,
(b) characters whose printable image is wider than
its horizontal escapement, and (c) characters with a
negative horizontal escapement.

2.3 Rules
2.3.1 Rule size

The DVI processor must be able to render rules of
any size up to 600 pt (horizontal) by 800 pt (vertical)
unless this is not possible due to device constraints
as outlined in section 2.

2.3.2 Placement of rules on the page

The lower left corner of a rule is to be placed on the
page at the location given by rounding the current
DVI coordinates as indicated in section 2.6.2. The
height and width of the rule is given by the formula
[Kn] where n is the dimension in DVI units and K is
a constant which converts from DVI units to device
units. !

Explanation: It’s important to remember that no rule
is rendered if n < 0, as specified in appendix A.

2.4 Number of rules per page

The DVI processor must be able to render a page
containing as many as 1000 rules unless this is not
possible due to device constraints as outlined in sec-
tion 2.

2.5 Stack

The DVI processor must be able to handle DVI files
whose push/pop stack is up to 100 levels deep.

2.6 Positioning on the page
2.6.1 Location of the origin

The point (0,0) in DVI coordinates is to be located
at a point one inch (25.4mm) from the top of the
page and one inch (25.4mm) from the left side of
the page.

Explanation: While the default margin given in this
circumstance is somewhat inconvenient for users of non-
U.S.-sized paper, the advantage of having a universally
standard default location of (0,0) and the widespread
assumption of the given default margin in most macro
packages outweighs the inconveniences. For some DVI
processors (e.g., screen previewers), this specification
refers to a virtual page and not the physical output.

! Devices with aspect ratios unequal to one will
need to maintain separate constants for vertical and
horizontal dimensions.

2.6.2 Changes in position due to
characters and rules

The definition of DVI files refers to six registers,
(h,v,w,z,y,z), which hold integer values in DVI
units. In practice, we also need registers hh and
vv, the pixel analogs of h and v, since it is not
always true that hh = pixel.round(h) or v =
pixel_round(v) where pixel round(n) is defined as
sign(Kn) - |abs(Kn) + 0.5| with sign(i) resulting
in —1if 4 < 0 and in 1 otherwise.

Whenever the DVI processor encounters an in-
struction that changes the current position, it up-
dates h and v using pure DVI units. If the change in
position is due to a command which sets a character,
the processor adds the horizontal escapement value
from the PK or GF file to hh to get the new value for
hh.

For a horizontal movement of = DVI units from any
other command, hh will be set to hh+pixel round(x)
if x < word_space for a horizontal movement to
the right or if z > —back_space for a horizon-
tal movement to the left. word_space is defined
as space — space_shrink, and back_space is defined
as 0.9quad if the processors uses TFM files. If the
processors does not use TFM files the design size of
the current font in the DVI file (after all necessary
magnifications have been applied) may be used for
a quad, and word_space may be approximated by
0.2quad. If z exceeds the bounds outlined above, hh
is set to be pixel_round(h+x). In this way, rounding
errors are absorbed by interword spaces.

For a vertical movement of y DVI units, wvv
is set similarly except that vv is set to wvv +
pixel_round(y) if —0.8quad < y < 0.8quad and set
to pixel round(v + y) otherwise. This allows verti-
cal rounding errors to be absorbed in the interline
spacing while still allowing fractions and super- and
subscripts to be printed consistently.

After any horizontal movement, a final check is
made as to whether dist > max_drift with dist de-
fined as abs(hh — pixel round(Kh)). If it is, then
hh is set to pixel_round(Kh) +sign(dist) - maz _drift.
A similar check is made with vv and v. maz_drift
should be set to 2 for output devices with device
units smaller than or equal to 0.005in (0.127 mm),
1 for output devices with device units greater than
0.0051in (0.127 mm) but less than or equal to 0.01in
(0.254mm) and 0 for output devices with device
units greater than 0.01in (0.254 mm).
Explanation: This method for tracking the positions
is oriented towards the typesetting of text. It does not
fix positioning problems with lines consisting completely
of characters of a fixed-width font, where one line con-
sists only of characters without any movements and the

next line contains movements. Other problematic ar-
eas are the creation of line graphics with fonts with line
segments. These line segments may not align.

2.6.3 Range of movement

The DVI processor should be able to handle move-
ments in the DVI file up to a total of 23! — 1 DVI
units in any direction from the origin.

2.6.4 Objects off the page

Any printable object which would lie entirely off
the physical page should not be rendered but any
changes to positioning should still be taken into
consideration. Any printable object which would
lie partially off the physical page should either be
clipped so that portion of the object that lies off the
page is not printed or omitted entirely, unless this
is not possible due to device constraints as outlined
in section 2.

Explanation: Because some output devices do unpre-
dictable things when objects are rendered partially or
completely off the edge of the page, it is up to the DVI
processor writer to make sure that objects printed par-
tially off the page are handled correctly.

2.7 Fonts
2.7.1 Font numbers

The DVI processor must be able to accept font num-
bers (the parameter k given by a fnt_def command)
in the range 0 < k < 256.

2.7.2 Distinct fonts

The DVI processor must be able to handle any doc-
ument containing 64 or fewer distinct fonts.

2.8 Specials

Specials are the parameters to the DVI commands
zxxl, xxx?2, zxxxd, and zzz4. This standard does
not define the meaning of any special, future tiers
may. Specials not officially defined by the DVI pro-
cessor standards committee should be flagged with a
warning when read from the DVI file. If any specials
are encountered that are ignored by the processor,
the processor must issue a warning message. These
warning messages may optionally be turned off at
run time.

3 Configuration

It must be possible for the installer of a DVI proces-
sor to configure such things as the location and nam-
ing scheme of fonts, default paper size, etc. without
having to recompile or relink the processor.

Explanation: “etc.” means “make as many things
configurable as possible.” This should be more detailled
(Hint due to Karl Berry).

4 Font files
4.1 Font formats

The DVI processor must be able to read PK fonts with
the location specifiable at run time. The PK format
is given in appendix C. GF support is optional. The
GF format is given in appendix B.

Explanation: The PK format is the preferred format
for bitmap fonts because (a) it is the most compact for-
mat in the TEX world and (b) included in the PX format
are pieces of information about the font (e.g., the hor-
izontal escapement in pixels for each character) which
are essential for fulfilling the typesetting requirements
of section 2.6.2.

4.2 The scaling number

The magnification and resolution of a font are com-
bined into a scaling number in one of two ways:

Resolution number The resolution number is
given by resolution X magnification where both
values are as above. This is the preferred spec-
ification for GF and PK files.

Magnification number The magnification num-
ber is given by 5 X resolution X magnification
where the resolution is given in dots per inch
(on devices with a aspect ratio unequal to one,
the horizontal resolution should be used) and a
magnification of 1 indicates normal sizing.

4.3 Magnifications
4.3.1 Minimum set of magnifications

The DVI processor must be able to use at least
fonts at the following magnifications of its tar-
get resolution: 1.0 (magstep0), 1.095 (magstep0.5),
1.2 (magstepl), 1.44 (magstep2), 1.728 (magstep3),
2.074 (magstepd), 2.488 (magstep5), 2.986
(magstep6), 3.583 (magstep?), 4.300 (magstep8),
and 5.160 (magstep9).
Explanation: The term magstepn stems from the
TEX and METAFONT control sequence with the same
name. It’s meaning is 1.2".

This list should not be taken as an exhaustive list. DVI
processor authors are encouraged to support all possible
magnifications.

4.3.2 Margin of error

If a DVI file requests a font at a size that does not
exist, but the requested size is within 0.2 % of a sup-
ported magnification with the font at that size ex-
isting, the DVI processor must use the latter font
without warning.

Explanation: TEX and METAFONT compute font
magnifications with different precisions. Further, calcu-
lations done by TEX and/or a DVI processor are subject
to roundoff errors. The margin prescribed is sufficient for
accomodating most of these errors. It is not intended to
compensate for fonts requested at an incorrect size.

4.4 Missing fonts

If a font is missing the DVI processor must continue
processing and, after issuing an appropriate warning
message, deal with the missing font in one of three
ways:

1. Insert appropriate white space where characters
of the font would appear.

2. Insert black rectangles of the size of the char-
acter given in the TFM file for the font.

3. Print the characters from that font at a different
size or from another font at the same size.

If methods 1 or 2 are used and the processor is un-
able to locate size information for the font in ques-
tion, then the processor may simply ignore any char-
acter setting command that occur while the current
font is that font.

Under no circumstances should a missing font
cause a fatal error.

A Device-Independent File Format
A.1 Introduction

The form of DVI files was designed by DAvID R. FucHS
in 1979. Almost any reasonable typesetting device can
be driven by a program that takes DVI files as input, and
a lot of such DVI-to-whatever programs have been writ-
ten. Thus, it is possible to print the output of document
compilers like TEX on many different kinds of equipment.

A DVI file is a stream of 8-bit bytes, which may be
regarded as a series of commands in a machine-like lan-
guage. The first byte of each command is the operation
code, and this code is followed by zero or more bytes
that provide parameters to the command. The parame-
ters themselves may consist of several consecutive bytes;
for example, the ‘set_rule’ command has two parameters,
each of which is four bytes long. Parameters are usually
regarded as nonnegative integers; but four-byte-long pa-
rameters, and shorter parameters that denote distances,
can be either positive or negative. Such parameters are
given in two’s complement notation. For example, a two-
byte-long distance parameter has a value between —2!°
and 2'% — 1.

A DVI file consists of a “preamble,” followed by a se-
quence of one or more “pages,” followed by a “postam-
ble.” The preamble is simply a pre command, with its
parameters that define the dimensions used in the file;
this must come first. Each “page” consists of a bop com-
mand, followed by any number of other commands that

tell where characters are to be placed on a physical page,
followed by an eop command. The pages appear in the
order that they were generated, not in any particular nu-
merical order. If we ignore nop commands and fnt_def
commands (which are allowed between any two com-
mands in the file), each eop command is immediately
followed by a bop command, or by a post command; in
the latter case, there are no more pages in the file, and
the remaining bytes form the postamble. Further details
about the postamble will be explained later.

Some parameters in DVI commands are “pointers.”
These are four-byte quantities that give the location
number of some other byte in the file; the first byte is
number 0, then comes number 1, and so on. For exam-
ple, one of the parameters of a bop command points to
the previous bop; this makes it feasible to read the pages
in backwards order, in case the results are being directed
to a device that stacks its output face up. Suppose the
preamble of a DVI file occupies bytes 0 to 99. Now if
the first page occupies bytes 100 to 999, say, and if the
second page occupies bytes 1000 to 1999, then the bop
that starts in byte 1000 points to 100 and the bop that
starts in byte 2000 points to 1000. (The very first bop,
i.e., the one that starts in byte 100, has a pointer of —1.)

The DVI format is intended to be both compact
and easily interpreted by a machine. Compactness is
achieved by making most of the information implicit in-
stead of explicit. When a DVI-reading program reads the
commands for a page, it keeps track of several quanti-
ties: (a) The current font f is an integer; this value is
changed only by fnt and fnt-num commands. (b) The
current position on the page is given by two numbers
called the horizontal and vertical coordinates, h and v.
Both coordinates are zero at the upper left corner of
the page; moving to the right corresponds to increas-
ing the horizontal coordinate, and moving down corre-
sponds to increasing the vertical coordinate. Thus, the
coordinates are essentially Cartesian, except that verti-
cal directions are flipped; the Cartesian version of (h,v)
would be (h, —v). (c) The current spacing amounts are
given by four numbers w, z, y, and z, where w and x
are used for horizontal spacing and where y and z are
used for vertical spacing. (d) There is a stack containing
(hyv,w,x,y, z) values; the DVI commands push and pop
are used to change the current level of operation. Note
that the current font f is not pushed and popped; the
stack contains only information about positioning.

The values of h, v, w, z, y, and z are signed inte-
gers having up to 32 bits, including the sign. Since they
represent physical distances, there is a small unit of mea-
surement such that increasing h by 1 means moving a
certain tiny distance to the right. The actual unit of
measurement is variable, as explained below.

A.2 Summary of DVI commands

Here is a list of all the commands that may appear in
a DVI file. Each command is specified by its symbolic
name (e.g., bop), its opcode byte (e.g., 139), and its

parameters (if any). The parameters are followed by a
bracketed number telling how many bytes they occupy;
for example, ‘p[4]” means that parameter p is four bytes
long.

set_char_0 0
Typeset character number 0 from font f such that
the reference point of the character is at (h,v).
Then increase h by the width of that character.
Note that a character may have zero or negative
width, so one cannot be sure that h will advance
after this command; but h usually does increase.

set_char_1 through set_char_127 (opcodes 1 to 127)
Do the operations of set_char_0; but use the char-
acter whose number matches the opcode, instead of
character 0.

setl 128 ¢[1]
Same as set_char_0, except that character number ¢
is typeset. TEX82 uses this command for characters
in the range 128 < ¢ < 256.

set2 129 ¢[2]

Same as setl, except that c is two bytes long, so it is
in the range 0 < ¢ < 65536. TEX82 never uses this
command, which is intended for processors that deal
with oriental languages; but a DVI processor should
allow character codes greater than 255. The proces-
sor may then assume that these characters have the
same width as the character whose respective codes
are ¢ mod 256.

set3 130 ¢[3]
Same as setl, except that c is three bytes long, so
it can be as large as 224 — 1.

set4 131 c[+4]
Same as set!, except that c is four bytes long, pos-
sibly even negative. Imagine that.

set_rule 132 a[+4] b[+4]
Typeset a solid black rectangle of height a and
width b, with its bottom left corner at (h,v). Then
set h «— h + b. If either a < 0 or b < 0, nothing
should be typeset. Note that if b < 0, the value
of h will decrease even though nothing else hap-
pens. Programs that typeset from DVI files should
be careful to make the rules line up carefully with
digitized characters, as explained in connection with
the rule_pixzels subroutine below.

putl 133 ¢[1]
Typeset character number ¢ from font f such that
the reference point of the character is at (h,v). (The
‘put’ commands are exactly like the ‘set’ commands,
except that they simply put out a character or a rule
without moving the reference point afterwards.)

put2 134 [2]
Same as set2, except that h is not changed.

put8 135 ¢[3]
Same as set8, except that h is not changed.

put 136 c[+4]
Same as set4, except that h is not changed.

put_rule 137 a[+4] b[+4]
Same as set_rule, except that h is not changed.

nop 138
No operation, do nothing. Any number of nop’s
may occur between DVI commands, but a nop can-
not be inserted between a command and its param-
eters or between two parameters.

bop 139 co[+4] c1[+4] ... co[+4] p[+4]
Beginning of a page: Set (h,v,w,z,y,z) <«
(0,0,0,0,0,0) and set the stack empty. Set the
current font f to an undefined value. The ten ¢;
parameters can be used to identify pages, if a user
wants to print only part of a DVI file; TEX82 gives
them the values of \countO ... \count9 at the time
\shipout was invoked for this page. The parameter
p points to the previous bop command in the file,
where the first bop has p = —1.

eop 140
End of page: Print what you have read since the
previous bop. At this point the stack should be
empty.

push 141
Push the current values of (h,v,w,z,y,z) onto the
top of the stack; do not change any of these values.
Note that f is not pushed.

pop 142
Pop the top six values off of the stack and assign
them to (h, v, w,z,y, z). The number of pops should
never exceed the number of pushes, since it would
be highly embarrassing if the stack were empty at
the time of a pop command.

right! 143 b[+1]
Set h < h + b, i.e., move right b units. The pa-
rameter is a signed number in two’s complement
notation, —128 < b < 128; if b < 0, the reference
point actually moves left.

right2 144 b[+2]
Same as right1, except that b is a two-byte quantity
in the range —32768 < b < 32768.

right3 145 b[+3]
Same as right!, except that b is a three-byte quan-
tity in the range —2% < b < 223,

right{ 146 b[+4]
Same as right! , except that b is a four-byte quantity
in the range —23' < b < 23%.

w0 147
Set h < h + w; i.e., move right w units. With
luck, this parameterless command will usually suf-
fice, because the same kind of motion will occur
several times in succession; the following commands
explain how w gets particular values.

wl 148 b[+1]
Set w «— b and h < h+b. The value of b is a signed
quantity in two’s complement notation, —128 < b <
128. This command changes the current w spacing
and moves right by b.

w2 149 b[+2]
Same as wl, but b is a two-byte-long parameter,
—32768 < b < 32768.

w3 150 b[+3]
Same as wl, but b is a three-byte-long parameter,
-2 < ph < 2%,

w4 151 b[+4]
Same as w1, but b is a four-byte-long parameter,
—2% <p < 2%

z0 152

Set h «— h + x; i.e., move right = units. The ‘a’
commands are like the ‘w’ commands except that
they involve z instead of w.

zl 153 b[+1]
Set x < b and h « h+b. The value of b is a signed
quantity in two’s complement notation, —128 < b <
128. This command changes the current x spacing
and moves right by b.

z2 154 b[+2]
Same as zI, but b is a two-byte-long parameter,
—32768 < b < 32768.

z3 155 b[+3]
Same as z1, but b is a three-byte-long parameter,
—2% < bh <22,

x4 156 b[+4]
Same as z1, but b is a four-byte-long parameter,
—231 < p <23,

downl 157 al+1]
Set v «— v + a, i.e., move down a units. The pa-
rameter is a signed number in two’s complement
notation, —128 < a < 128; if a < 0, the reference
point actually moves up.

down2 158 a[+2]
Same as downl , except that a is a two-byte quantity
in the range —32768 < a < 32768.

down8 159 a[+3]
Same as downl, except that a is a three-byte quan-
tity in the range —2% < a < 223,

down4 160 a[+4]
Same as downl , except that a is a four-byte quan-
tity in the range —23! < a < 23%.

y0 161
Set v < v + y; i.e., move down y units. With luck,
this parameterless command will usually suffice, be-
cause the same kind of motion will occur several
times in succession; the following commands explain
how y gets particular values.

yl 162 al+1]
Set y « a and v < v+ a. The value of a is a signed
quantity in two’s complement notation, —128 < a <
128. This command changes the current y spacing
and moves down by a.

y2 163 a[+2]
Same as yI, but a is a two-byte-long parameter,
—32768 < a < 32768.

y3 164 al+3]
Same as yI, but a is a three-byte-long parameter,
-2 < g < 2%,

y4 165 a[+4]
Same as y1, but a is a four-byte-long parameter,
—2%1 < g < 2%,

20 166

Set v «— v + z; i.e.,, move down z units. The ‘2’
commands are like the ‘y’ commands except that
they involve z instead of y.

21 167 a[+1]
Set z «— a and v < v+ a. The value of a is a signed
quantity in two’s complement notation, —128 < a <
128. This command changes the current z spacing
and moves down by a.

22 168 a[+2]
Same as zI, but a is a two-byte-long parameter,
—32768 < a < 32768.

28 169 a[+3]
Same as z1, but a is a three-byte-long parameter,
—2% < q < 2%,

24 170 a[+4]
Same as zI, but a is a four-byte-long parameter,
-2%t <a< 2%

fnt_num_0 171
Set f < 0. Font 0 must previously have been de-
fined by a fnt_def instruction, as explained below.

fnt_num_1 through fnt_num_68 (opcodes 172 to 234)
Set f«— 1, ..., f < 63, respectively.

fntl 235 K[1]
Set f «— k. TEX82 uses this command for font num-
bers in the range 64 < k < 256.

fnt2 236 k[2]
Same as fntl, except that k is two bytes long, so it
is in the range 0 < k < 65536. TEX82 never gen-
erates this command, but large font numbers may
prove useful for specifications of color or texture, or
they may be used for special fonts that have fixed
numbers in some external coding scheme.

fnt3 237 K[3]
Same as fntl, except that k is three bytes long, so
it can be as large as 224 — 1.

fnt4d 238 k[+4]
Same as fnt1, except that k is four bytes long; this is
for the really big font numbers (and for the negative
ones).

zzxl 239 k[1] z[k]
This command is undefined in general; it functions
as a (k+2)-byte nop unless special DVI-reading pro-
grams are being used. TEX82 generates zzx! when
a short enough \special appears, setting k£ to the
number of bytes being sent. It is recommended that
x be a string having the form of a keyword followed
by possible parameters relevant to that keyword.

zzz2 240 k[2] z[k]
Like zzz1, but 0 < k < 65536.

zzx8 241 k(3] z[k]
Like zzzl, but 0 < k < 224,
zzxd 242 k[4] z[k]

Like zzx1, but k can be ridiculously large. TEX82
uses zrr4 when xzxxl would be incorrect.

fnt_def1 243 k[1] c[4] s[4] d[4] a[1] I[1] nla +]
Define font k, where 0 < k < 256; font definitions
will be explained shortly.

fnt_def2 244 k[2] c[4] s[4] d[4] a[1] I[1] nla +]
Define font k, where 0 < k < 65536.

fnt_def3 245 E[3] c[4] s[4] d[4] a[1] I[1] nla +1]
Define font k, where 0 < k < 224,

fnt_def] 246 k[+4] c[4] s[4] d[4] a[1] I[1] nla +1]
Define font k, where —23! < k < 231,

pre 247 i[1] num[4] den[4] mag[4] k[1] z[k]
Beginning of the preamble; this must come at the
very beginning of the file. Parameters i, num, den,
mag, k, and x are explained below.

post 248
Beginning of the postamble, see below.

post_post 249
Ending of the postamble, see below.

Commands 250-255 are undefined at the present time.

A.3 The preamble

The preamble contains basic information about the file
as a whole. As stated above, there are six parameters:
i[1] num[4] den[4] mag[4] k[1] x[k].

The i byte identifies DVI format; currently this byte is
always set to 2. (The value ¢ = 3 is currently used for
an extended format that allows a mixture of right-to-left
and left-to-right typesetting. Some day we will set ¢ = 4,
when DVI format makes another incompatible change—

perhaps in the year 2048.)

The next two parameters, num and den, are positive
integers that define the units of measurement; they are
the numerator and denominator of a fraction by which
all dimensions in the DVI file could be multiplied in order
to get lengths in units of 1077 meters. (For example,
there are exactly 7227 TEX points in 254 centimeters,
and TEX82 works with scaled points where there are
216 sp in a point, so TEX82 sets num = 25400000 and
den = 7227 - 2'6 = 473628672.)

The mag parameter is what TEX82 calls \mag, i.e.,
1000 times the desired magnification. The actual frac-
tion by which dimensions are multiplied is therefore
mn/1000d. Note that if a TEX source document does
not call for any ‘true’ dimensions, and if you change it
only by specifying a different \mag setting, the DVI file
that TEX creates will be completely unchanged except
for the value of mag in the preamble and postamble.
(Fancy DVI-reading programs allow users to override the
mag setting when a DVI file is being printed.)

Finally, k£ and z allow the DVI writer to include a
comment, which is not interpreted further. The length
of comment x is k, where 0 < k < 256.

A.4 Font definitions

Font definitions for a given font number k contain further
parameters

c[4] s[4] d[4] a[1] I[1] n[a +1].
The four-byte value ¢ is the check sum that TEX (or
whatever program generated the DVI file) found in the
TFM file for this font; ¢ should match the check sum of
the font found by programs that read this DVI file.

Parameter s contains a fixed-point scale factor that is
applied to the character widths in font k; font dimen-
sions in TFM files and other font files are relative to this
quantity, which is always positive and less than 227. Tt
is given in the same units as the other dimensions of the
DVI file. Parameter d is similar to s; it is the “design
size,” and (like s) it is given in DVI units. Thus, font k
is to be used at mag - s/1000d times its normal size.

The remaining part of a font definition gives the exter-
nal name of the font, which is an ASCII string of length
a + I. The number a is the length of the “area” or di-
rectory, and [is the length of the font name itself; the
standard local system font area is supposed to be used
when a = 0. The n field contains the area in its first a
bytes.

Font definitions must appear before the first use of a
particular font number. Once font k is defined, it must
not be defined again; however, we shall see below that
font definitions appear in the postamble as well as in
the pages, so in this sense each font number is defined
exactly twice, if at all. Like nop commands, font defini-
tions can appear before the first bop, or between an eop
and a bop.

A.5 The postamble

The last page in a DVI file is followed by ‘post’; this
command introduces the postamble, which summarizes
important facts that TEX has accumulated about the
file, making it possible to print subsets of the data with
reasonable efficiency. The postamble has the form

post pl4] num[4] den[4] mag[4] 1[4] u[4] s[2] t[2]

(font definitions)

post_post q[4] i[1] 223’s[> 4]
Here p is a pointer to the final bop in the file. The next
three parameters, num, den, and mag, are duplicates of
the quantities that appeared in the preamble.

Parameters [and u give respectively the height-plus-

depth of the tallest page and the width of the widest
page, in the same units as other dimensions of the file.
These numbers might be used by a DVI-reading program
to position individual “pages” on large sheets of film or
paper; however, the standard convention for output on
normal size paper is to position each page so that the
upper left-hand corner is exactly one inch from the left
and the top. Experience has shown that it is unwise
to design DVI-to-printer software that attempts cleverly
to center the output; a fixed position of the upper left
corner is easiest for users to understand and to work
with. Therefore | and u are often ignored.

Parameter s is the maximum stack depth (i.e., the
largest excess of push commands over pop commands)
needed to process this file. Then comes ¢, the total num-
ber of pages (bop commands) present.

The postamble continues with font definitions, which
are any number of fnt_def commands as described above,
possibly interspersed with nop commands. Each font
number that is used in the DVI file must be defined ex-
actly twice: Once before it is first selected by a fnt com-
mand, and once in the postamble.

The last part of the postamble, following the post_post
byte that signifies the end of the font definitions, con-
tains ¢, a pointer to the post command that started the
postamble. An identification byte, ¢, comes next; this
currently equals 2, as in the preamble.

The i byte is followed by four or more bytes that are
all equal to the decimal number 223 (i.e., “387 in octal).
TEX puts out four to seven of these trailing bytes, until
the total length of the file is a multiple of four bytes,
since this works out best on machines that pack four
bytes per word; but any number of 223’s is allowed, as
long as there are at least four of them. In effect, 223 is
a sort of signature that is added at the very end.

This curious way to finish off a DVI file makes it feasi-
ble for DVI-reading programs to find the postamble first,
on most computers, even though TEX wants to write the
postamble last. Most operating systems permit random
access to individual words or bytes of a file, so the DVI
reader can start at the end and skip backwards over the
223’s until finding the identification byte. Then it can
back up four bytes, read ¢, and move to byte g of the
file. This byte should, of course, contain the value 248
(post); now the postamble can be read, so the DVI reader
discovers all the information needed for typesetting the
pages. Note that it is also possible to skip through the
DVI file at reasonably high speed to locate a particular
page, if that proves desirable. This saves a lot of time,
since DVI files used in production jobs tend to be large.

B Generic Font File Format
B.1 Introduction

The most important output produced by a typical run of
METAFONT is the “generic font” (GF) file that specifies
the bit patterns of the characters that have been drawn.
The term generic indicates that this file format doesn’t
match the conventions of any name-brand manufacturer;
but it is easy to convert GF files to the special format re-
quired by almost all digital phototypesetting equipment.
There’s a strong analogy between the DVI files written
by TEX and the GF files written by METAFONT; and, in
fact, the file formats have a lot in common.

A GF file is a stream of 8-bit bytes that may be re-
garded as a series of commands in a machine-like lan-
guage. The first byte of each command is the operation
code, and this code is followed by zero or more bytes
that provide parameters to the command. The parame-
ters themselves may consist of several consecutive bytes;
for example, the ‘boc’ (beginning of character) command

has six parameters, each of which is four bytes long. Pa-
rameters are usually regarded as nonnegative integers;
but four-byte-long parameters can be either positive or
negative, hence they range in value from —23* to 231 —1.
As in TFM files, numbers that occupy more than one byte
position appear in BigEndian order, and negative num-
bers appear in two’s complement notation.

A GF file consists of a “preamble,” followed by a
sequence of one or more “characters,” followed by a
“postamble.” The preamble is simply a pre command,
with its parameters that introduce the file; this must
come first. Each “character” consists of a boc command,
followed by any number of other commands that specify
“black” pixels, followed by an eoc command. The char-
acters appear in the order that METAFONT generated
them. If we ignore no-op commands (which are allowed
between any two commands in the file), each eoc com-
mand is immediately followed by a boc command, or by
a post command; in the latter case, there are no