

THE DEFINITIVE GUIDE TO

EXPLORING FILE FORMATS

Mr.Mouse and WATTO
© 2004 XeNTaX.com & WATTO.org

Version 1.0, November 1st 2004

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

1. Table of Contents

1. Table of Contents..2
2. Introduction ...4

What is a GRA?...5
What is a GRAF? ..6

3. Tools...7
Hex Editors..7
Hex Workshop...8

4. Terms, Definitions, and Data Structures...........................10
Files...10
Bits ..11
Bytes ...12
16-bit (2-byte) numbers ...13
32-bit (4-byte) numbers ...14
64-bit (8-byte) numbers ...15
Strings ...16
Hexadecimal Numbering ...17
Signed and Unsigned Numbers...18
Big-Endian and Little-Endian ...19
File Offsets ..20

5. Archive Patterns..21
Directory Archives ...22
Tree Archives ..23
Chunked Archives ...26
Split Chunk Archives ...27
External Directory Archives ...28

6. Checking Your Results...29
Common Types Of Fields..29
Validating Your Fields..30
Padding ...31
Filename Patterns ...32

7. Encryption and Compression ..33
7.1 The basics ...33
XOR...34
NOT...35
SHL ...35
SHR...35
7. 2 Encryption ..36
Painkiller Encryption ..37
Compression ...44

8. Worked Examples ...47
Quake *.PAK ...47

9. Appendix..53
A: Binary Æ Byte Number Table..53
B. American Standard Code for Information Interchange (ASCII) Table57
C. Format of some common Game Archives...59
D: Useful References ..63

© 2004 Mr.Mouse and WATTO

2

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

E: Common File Format Tags ...64
10. Legal Information ..65

© 2004 Mr.Mouse and WATTO

3

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

2. Introduction

Computer games are vast and many, however most computer games have
something in common – they need a place to store all their important files like
images, movies, and sounds. To do this, computer game developers typically
store their data into a big archive file.

There are many reasons for storing all your data files in one big archive, some
reasons include reducing the number of files on a CD, hiding the data files to
stop people hacking the game, and so that all data files can be accessed
using a single data stream.

However, the bad news for gamers is that there are almost as many different
archives as there are different computer games – every game developer
creates their own archive formats, and they even change their formats
between games or departments in the company.

This brings us to the focus of the tutorial – how to explore the archives and
grab the files from within them. This tutorial will attempt to make it easy for
anyone to explore a new format, with the aim of promoting game
modifications and enhancements by the community.

In the following pages, we will discuss the terms Game Resource Archives
(GRAs) and Game Resource Archive Formats (GRAFs), common data types,
and other definitions. From there, we will explain the fundamentals of cracking
a file format, including the tools you use, and the patterns to look out for.

Thanks for reading our guide; we wish you the best of luck in your
exploration☺.

© 2004 Mr.Mouse and WATTO

4

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

What is a GRA?

We should start this off by defining the definition of an archive. An archive is a
file that usually stores many small individual data files inside it. The most well-
known archive format that you will be familiar with is *.zip archive, which you
should recognise as a way to package many files together into a single file.

A GRA (Game Resource Archive) defines an archive that is used by a specific
game, and contains resource or data files that are used within the game, such
as images, sounds, scripts, and text.

© 2004 Mr.Mouse and WATTO

5

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

What is a GRAF?

GRAF (Game Resource Archive Format) describes the way a game archive is
constructed, and in particular, how and where the files are found within the
archive. These formats usually differ for each individual game, however
occasionally a game developer will stick with a particular format for a few
games of the same vintage.

Programmers usually define their GRAFs according to the needs and
structure of the game itself, i.e. the game engine. A common principle,
however, is to use a format that can be quickly and easily be opened by the
game, even though the files in the archive may be different types. For
example, different levels in a game need different sounds and textures, so
often the sounds and images for each level are packaged into the same
archive, even though clearly images and sounds are handled differently.

In addition, the actual resources used in a game change frequently as the
game is being developed. To make it easy for the game to adapt to the
changes, the archive format is structured to be ‘universal’ in their approach of
storing files. In simpler terms, the archive needs to provide the game engine
with a common and recognisable pattern of resource files, and a list of the
files that the GRA archive contains.

© 2004 Mr.Mouse and WATTO

6

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

3. Tools

Hex Editors

Hex editors are the standard class of program that you use if you wish to
crack the formats of a newly encountered game.

The generic hex editor displays the contents of any file in a similar way that a
piece of text in a word processor would be shown to you: from left to right, line
by line, all the way down to the last character. However a hex editor differs
from a word processor in that it shows the file as hexadecimal numbers rather
than letters.

There are many hex editors available for free download over the Internet,
however the one that we can fully recommend is Hex Workshop from
Breakpoint Software. Hex Workshop will be the editor used in all the
screenshots, and the one used in the examples. Hex Workshop includes
some handy little functions, which is partly the reason why we recommend it,
such as an easy to use hexadecimal calculator, lists of all data types that are
at the current location of your cursor, bookmarking, and colour mapping.

© 2004 Mr.Mouse and WATTO

7

http://www.bpsoft.com/

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

Hex Workshop

Examine Figure 1 carefully, as it shows the hex editor that will be used
throughout this guide, Hex Workshop. After installation you can either start it
and open any file you want using the File menu, alternatively (and this you will
do most of the time) you can select to open files from the context menu in
Windows Explorer. To do that, right click on any file in Explorer and select
“Hex edit with Hex Workshop”.
Once you have opened a file, you will be presented with a similar view of the
file content as depicted in Figure 1. You can examine the file’s hexadecimal
interpretation (A), or ASCII interpretation of the same bytes (B). The table to
the far left shows the offsets of the lines shown. As you can see, we have just
opened one of Doom 3’s PK4 files. We will later see that these are actually
ZIP files. For now, you can see the file starts with the characters “PK”. In this
case, it is actually an ID tag that is used in all ZIP archives. PK stands for
Phillip Katz, the author of the ZIP compression technique, who died at the age
of 37 due to fatal effects of alcoholism in April 2000. The current cursor
position is at offset 18 (see figure) and the Data Interpreter (C) shows the
relative value at this file position. You can see it shows different data types
(see Chapter 4) ranging from bytes to strings to binary values using the byte
sequence starting at this offset. In the Figure, we have colour mapped and
bookmarked (D) some areas of our interest. You can select any range of
bytes in the file and bookmark or colour map it. Simply drag the cursor along
your area of interest holding the left mouse button and right click the
highlighted area to show the context menu from where you select the options.
When you bookmark it, you can choose how the bookmark should be
interpreted (value), and give a description. The bookmarks will be shown with
their offset in the file and the size in bytes (length). This is a handy feature as
you can click on any bookmark to quickly switch to that offset. When you
leave Hex Workshop it will ask you if you want to save your colour map or
bookmarks. Later, you can load these regardless of the file you have opened.
Thus, if you have solved the puzzle of a GRAF, you can apply the bookmarks
and colour mapping to other files that you expect to have the same format.

Hex Workshop has another handy GoTo method, which you too can access
from the context menu. There are a number of options. With the basic GoTo
option you can type in an address (offset) in the file you wish to go to. Two
more powerful options are accessed by selecting a range of bytes (preferably
one that you expect to represent an offset value) and then right clicking it. You
can then either GoTo the value of your selected range or GoTo that the
address of your value plus the current offset of your variable.
For instance, suppose you expect a 4-byte value (i.e. 32-bit) at offset 4 to
represent the offset of a resource in a GRA. You can then opt to select the 4
bytes from this position (i.e. byte 4, 5, 6, and 7) and jump to the location in the
file this 32-bit number points to. On the other hand, it might be that your file
has an ID tag (GRAIS) of 4 bytes (i.e. bytes 0-3, see also offsets) and the
GRAF does not count the 4 bytes of this tag when referring to offsets of
resources. Thus the number you are labelling as an offset may in fact be a
relative offset, meaning that it is relative to some other offset (in this case the
offset where the GRAIS ends). You can easily jump to this relative location

© 2004 Mr.Mouse and WATTO

8

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

with Hex Workshop, as the other GoTo option you are offered is to jump to the
location your value depicts + the offset of the currently selected area. You can
see that this program can come in very handy indeed if you are looking to
unravel the puzzle of new archive formats.

Figure 1. Layout of Hex Workshop. A. Hexadecimal representation of file
content in sequential byte order. B. ASCII interpretation of file content. C.
Interpretation of data at current cursor position. D. User window showing
bookmarked areas in the file and the description given to these areas by the
user.

© 2004 Mr.Mouse and WATTO

9

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

4. Terms, Definitions, and Data Structures

To understand the patterns and construction or archives, we must first
introduce the concept of data structures.

Files

Files are typically dealt with as a series of bytes stored one after the other,
and when combined form a representation of a piece of data. If you have a file
that is 12 bytes in size, it indicates that the file contains 12 single bytes that
can be read in a certain way to represent a value. File sizes start off at the
preliminary byte, followed by kilobytes (KB, 1024 bytes) and megabytes (MB)
that are generic terms representing thousands and millions of bytes
respectively.

© 2004 Mr.Mouse and WATTO

10

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

Bits

When we talk about the basic structure of a file, we typically think in terms of
bytes. However, the actual underlying file structure, at its absolute simplest, is
a sequence of bits or binary values, but we usually don’t deal with this level of
representation too often because binary values don’t represent anything
meaningful in their singular state – they need to be grouped into sets of 8 bits
to become a valid representation of data.

A bit, or binary value, is the language of a computer, and thus the underlying
structure of everything readable by a computer. A bit only has 2 possible
values – 1 or 0 – thus it is obvious why they are limited in what they represent.
However, when we take groups of bits and join them together, their values
couple together into larger numbers that hold greater value.

The number of grouped bits needed to represent basic data is 8 bits, more
commonly known as a byte. A byte can hold any value between 0 and 255,
much more than the 2 possible combinations available to a bit.

So how do coupled bits represent a larger numerical value such as that of a
byte? This is achieved quite easily by referring to each of the 8 bits as an
increasing power of 2. If we take a look at a single bit, we can think of it as
having either the value 1x20 or 0x20 – thus giving us the values 1 or 0. If we
add a bit to the left, the power of the new bit is either 1x21 or 0x21 – either 2 or
0. By adding the values of these 2 bits together, you should be able to see
that all possible combinations will give us the values 0, 1, 2, or 3. This is
shown in the table below.

Bit 1 (21) Bit 0 (20) Value
0 0 0 (0x21 + 0x20)
0 1 1 (0x21 + 1x20)
1 0 2 (1x21 + 0x20)
1 1 3 (1x21 + 1x20)

If we continue this pattern for the remaining 6 bits (to make a total of 8 bits ie
1 byte) then we can provide powers up to 27, and thus if all 8 bits had the
value 1 and we added them together, we would end up with the number 255.
Appendix A shows all possible values of a byte, and the 8 bits used to create
the value.

© 2004 Mr.Mouse and WATTO

11

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

Bytes

As described above, a byte is composed of 8 bits, and can thus contain a
value between 0 and 255. When you open a file in a hex editor, each value
you see represents a single byte value. You will probably not see numbers
between 0 and 255 representing the bytes in a file; rather you will most
probably see hexadecimal representations of the values, ranging from 00 to
FF. For an explanation of hexadecimal numbering, see the Hexadecimal
Numbering section below.

© 2004 Mr.Mouse and WATTO

12

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

16-bit (2-byte) numbers

From this point forward, we need to be careful what we call each of these data
types. Why? Because each programming language uses different names for
the same values.

A 16-bit value is commonly known in older programming languages (C++ or
earlier) as a word or an Integer. Newer programming languages, such as Java
and the .NET languages, call it a Short.

A 16-bit number is just as the name suggests, a number created by 16 bits in
a row. To determine the value of the 16-bit number, we follow the same
process as when we wanted to get the value of a byte.

Each of the 16 bits that make up the 16-bit number represents a power of 2 –
the leftmost bit represents 215 and the rightmost bit 20. Just as with bytes, we
just go through each bit and calculate the bitvalue x power.

An example – lets say we have the following 16 bits…

101111000001100

Working from left to right, we get the value…
1x215+0x214+1x213+1x212+1x211+1x210+0x29+…+0x21+0x20

If you work this out, you should end up with the number 24076.

If all 16 bits had the value 1, you would end up with the number 65535 –
therefore the value of a 16-bit number ranges between 0 and 65535.

© 2004 Mr.Mouse and WATTO

13

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

32-bit (4-byte) numbers

If you have been following us so far, you should be able to see just how you
would calculate the value of a 32-bit number. A 32-bit number uses 32 bits to
represent it, and therefore has a value between 0 and 4294967295. This is a
very large range, and thus is the reason why most values used in archives are
stored in groups of 32-bits.

A 32-bit number in older programming languages is known as a dword or a
Long. In newer languages, this is known as an Integer.

© 2004 Mr.Mouse and WATTO

14

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

64-bit (8-byte) numbers

As with the previous example, this is a number represented by 64 bits, and
thus can contain any value between 0 and a massive
18446744073709551615. However, they can also represent floating-point
numbers. These range in value from
-1.79769313486232E308 to -4.94065645841247E-324 for negative values
and from 4.94065645841247E-324 to 1.79769313486232E308 for positive
values. These numbers are very rarely used in GRAs, but will be becoming
more popular as things like 64-bit processors take off. Programming
languages can refer to these as Longs, Doubles and even Floats.

© 2004 Mr.Mouse and WATTO

15

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

Strings

One of the most common tasks performed on a computer is word processing,
so naturally we need some way of representing text in a document. A piece of
text in a document is called a String, which more formally means a sequence
of characters.

Although there are many languages in the world, and Spanish being the most
spoken Latin based language, in Informatics the first Latin language used in
the Western world is English. The English script consists of 52 letters (upper
and lower case), 10 numbers, and about 30 symbols. Seeing as though this
adds up to about 92, it seems quite logical that we can represent text as
binary values in a byte (remembering a byte supports up to 255 different
numbers). This is exactly what happens when you open a text document in a
word processor – the word processor reads the bytes of the file and
represents each byte value as a character.

For example, when the word processor reads a byte with value 65, it displays
the letter ‘A’. The byte value 100 represents the letter ‘d’. You can then see
that each byte value between 0 and 255 represents a letter, number, or
symbol in the English alphabet. It is for this reason that if you open a non-text
file in a word processor, you will see a lot of different letters and symbols – the
word processor is displaying each byte as if it is a letter – because it simply
doesn’t know that it isn’t a text file.

A character, therefore, is an 8-bit number that is represented as a readable
English symbol. A group of characters written in sequence is known as a
String, but only if it is intended to be read as English – if you see a group of
English letters in a file that doesn’t make any sense, it may not be a String.
Caution should be taken when discarding a string of characters. Nowadays
many different countries sell mainstream programs, and more often than not
you will find pieces of text that are in a different language. What could seem to
the English speaking as gibberish might clearly be another language. For
instance, these characters may represent oriental characters that will be
translated into the right script if you have the software support. Japanese
software is well-known and it is evident that they use their own language to
describe files or events in their archives. Likewise, many titles come from
Europe, so the strings could be in Russian, Finnish, German, Hungarian and
so forth.

© 2004 Mr.Mouse and WATTO

16

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

Hexadecimal Numbering

Hexadecimal numbering represents a byte value in a convenient and compact
way, and is the most common form of numbering used in a hex editor.

Recall that a byte can contain a value between 0 and 256. To write this
number in hexadecimal, we split the number into 2 values, each representing
a power of 16, much like binary numbers represent powers of 2.

Because we are talking about powers greater than 10, we need to add in
some additional symbols to represent the numbers 10 through 15 with a
single character. To do this, we use the letters A through F to represent the
numbers 10 through 15. So, the letter C in hexadecimal represents the
number 12.

Now how do we write a number in power 16? As mentioned earlier, the byte
value is split up into 2, with the first number representing 161 and the second
number representing 160. You may notice that this is similar to the way bits
are joined together to form larger numbers.

The second number of the pair can take any value between 0 and 16 (labelled
0 through F), where the value represents number x 160. So, if the second
number was 6, it would represent the number 6x160 –the value 6. If the
second number was B, it would similarly represent the value 11x160 – the
value 11.

The first number of the pair represents the value number x 161. So, if the first
number was 2, it would represent the value 2x161 – the value 32.

Let’s look at a full example now. If we are given the hexadecimal value 1F,
what does it represent? The number 1 means 1x161 and the F means 15x160.
Added together, we get 16+15, the value 31. Similarly, the hexadecimal
number E3 represents 14x161+3x160, the number 227.

It should be clear to you now that we can represent a byte (values 0 through
255) in the hexadecimal number system using the values 00 through FF. Here
we print hexadecimals as &h <value>.

© 2004 Mr.Mouse and WATTO

17

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

Signed and Unsigned Numbers

So by now you are clear as to how numbers are stored in files, and even how
strings are stored, but what about negative numbers? Luckily, negative
numbers are really easy.

There are only 2 possible classes of numbers used here – either positive or
negative. This maps perfectly with a single bit of value 0 or 1 respectively.

Rather than add an extra bit to a number, we take the bit with the highest
value and interpret it as a positive or negative sign rather than contributing to
the number. For example, in an 8-bit number, you would count all the bits
from 20 to 26, and the value of the 27 bit will determine whether the value it
positive or negative. You should note that because the highest bit is being
used for another purpose, it cannot be used as part of the number itself. This
effectively cuts the possible values of the number in half. In our example, you
would normally be able to have any value between 0 and 255; however with
the negative bit we now have numbers between -127 and 127. Also note that
0 and -0 both indicate the number 0.

Here we need to introduce a way of knowing whether a number will be
positive-only, or a positive/negative number. We therefore use the term
signed to indicate that the highest bit is used as a sign, or the term unsigned
indicating the number is positive. Therefore, if you are told a 16-bit number is
unsigned, you will know the number ranges between 0 and 65535. However,
if it was a signed 16-bit number, it would range between –32767 and 32767.

Note that for archives, it is very rare that you would need to use signed
numbers. Unless mentioned, you should assume all numbers used in archives
and in this document are unsigned.

© 2004 Mr.Mouse and WATTO

18

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

Big-Endian and Little-Endian

If you paid close attention, you would have noticed that whenever we
calculate a number, the bit with the highest value was always on the left, and
the lowest value on the right. This is regarded as almost a standard today
amongst PC users, however some files, programs, and computer systems
decided it was better to read it the other way around (ie right-to-left instead of
left-to-right). So once again, we need to define some terms so that people
know what order we are talking about.

Little-Endian order is the one we will be using in this document, and unless
stated specifically you should assume that Little-Endian order is used in any
file. The alternate is Big-Endian ordering.

So let’s see an example. Take the following stream or 8 bits

10001110

If you have been following the document so far, you would quickly calculate
the value of this 8-bit number as being

1x27 + 0x26 + … + 1x21 + 0x20 = 142

This is an example of Little-Endian ordering. However, in Big-Endian ordering
we need to read the number in the opposite direction

1x20 + 0x21 + … + 1x26 + 0x27 = 113

It is always important to read the numbers in the correct order, otherwise you
will end up with numbers that are meaningless and incorrect. As mentioned, if
you don’t know which order to use, assume Little-Endian ordering. We will use
Little-Endian order for all examples in this document.

© 2004 Mr.Mouse and WATTO

19

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

File Offsets

One of the most fundamentals of format exploring is the concept of file offsets.
A file offset is the position of a certain piece of data in a file, measured from
the first byte of the file. However, as with most computer programming, we
start our number counts at 0, not at 1. Therefore, if we are at the very
beginning of the file, before we read anything, we are at offset 0. After we
read 1 byte, we are at offset 1. Read another 6 bytes and we are at offset 7.

If the concept is a little hard to grasp, think of an offset as being a bar that
divides a file up byte-by-byte. If we are at the beginning of a file, offset 0, we
have a bar right at the beginning before the first byte

I0110001011011000001011110

If we are at offset 3, we place the bar after the 3rd byte of the file, and before
the 4th byte

011I0001011011000001011110

Similarly, offset 16 places the bar after byte 16, and before byte 17

0110001011011000I001011110

© 2004 Mr.Mouse and WATTO

20

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

5. Archive Patterns

There are literally thousands of different archives out there, however most
archives will conform to one of several basic formats. Here we present the
basic archive patterns so you can help pick the basic archive type, and once
you know that you can make progress faster.

Note the graphical samples presented here list some fields. These fields are
not fixed, and indeed may be totally different to your archive. You should use
the samples supplied as a guide to the overall structure only, not as a specific
guide for a format.

Also note that in many cases, but not all, the first few bytes indicate the name
of the format the current archive has. For instance, in the example in Figure 1,
we opened a PK4 archive from Doom 3, and it’s first 2 bytes gave away the
format the archive has: PKZIP (remember they read ‘PK’). We will call them
game resource archive identity strings (GRAIS). The length of these strings
may vary per archive investigated, and may also be completely absent.

© 2004 Mr.Mouse and WATTO

21

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

Directory Archives

Directory archives are by far the most common archive structure in use today.
Directory archives work by storing a directory somewhere in the archive that
outlines the offset of each file in the archive.

Usually the directory is presented at the beginning of the archive (called a
header), as in the example below, however occasionally the directory will be
placed elsewhere in the archive (typically at the end and called a tail). If the
directory is not at the start, there will be a field somewhere that gives you the
position of the archive – after all the game itself needs to know where the
directory is. The directory offset is usually a 4-byte field either somewhere in
the archive header, or at the very end of the archive.

Here is a sample graphic representation of the archive

Archive Header
4 - GRAIS (String)
4 - Number of Files
Directory
 File Entry 1

4 - File Offset
4 - File Size
X - Filename

 File Entry 2
4 - File Offset
4 - File Size
X - Filename

 …
 File Entry n

4 - File Offset
4 - File Size
X - Filename

File Data
 File Data 1
 File Data 2
 …
 File Data n

© 2004 Mr.Mouse and WATTO

22

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

Tree Archives

Tree archives are more complicated archives that attempt to store a complete
directory tree structure inside a file. This is usually done by defining a group of
directory entries, where each directory entry points to another directory entry,
and so forth until you reach the folder that contains the files, which then
progresses as in the directory archive.

Here is a sample graphic representation of the archive

Archive Header
4 - GRAIS (String)
4 - Number of Directories at Root
4 - Number of Files
Directory Entries
 Directory Entry 1

X - Filename
4 - Subdirectory Offset
4 - Number of Files in Directory
4 - Number of Subdirectories in Directory

 Directory Entry 2
X - Filename
4 - Subdirectory Offset
4 - Number of Files in Directory
4 - Number of Subdirectories in Directory

 …
 Directory Entry n

X - Filename
4 - Subdirectory Offset
4 - Number of Files in Directory
4 - Number of Subdirectories in Directory

File Entries
 File Entry 1

4 - File Offset
4 - File Size
X - Filename

 File Entry 2
4 - File Offset
4 - File Size
X - Filename

 …
 File Entry n

4 - File Offset
4 - File Size
X - Filename

File Data
 File Data 1
 File Data 2
 …
 File Data n

© 2004 Mr.Mouse and WATTO

23

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

As these archives are quite difficult to explain, I will provide an example here.
Let’s pretend we have 3 files in the directories specified below

\data\sounds\snd1.wav
\data\sounds\snd2.wav
\data\images\temp\pic1.bmp

The following graphic shows the structure of the archive that contains these 3
files.

Archive Header
4 - GRAIS (String) HEAD
4 - Number of Directories at Root 1
4 - Number of Files 3
Directory Entries
 Directory Entry 1

X - Filename data
4 - Subdirectory Offset offset to Directory Entry 2
4 - Number of Files in Directory 0
4 - Number of Subdirectories in Directory 2

 Directory Entry 2
X - Filename sounds
4 - Subdirectory Offset offset to File Entry 1
4 - Number of Files in Directory 2
4 - Number of Subdirectories in Directory 0

 Directory Entry 3
X - Filename images
4 - Subdirectory Offset offset to Directory Entry 4
4 - Number of Files in Directory 0
4 - Number of Subdirectories in Directory 1

 Directory Entry 4
X - Filename temp
4 - Subdirectory Offset offset to File Entry 3
4 - Number of Files in Directory 1
4 - Number of Subdirectories in Directory 0

File Entries
 File Entry 1

4 - File Offset offset to File Data 1
4 - File Size size of File Data 1
X - Filename snd1.wav

 File Entry 2
4 - File Offset offset to File Data 2
4 - File Size size of File Data 2
X - Filename snd2.wav

 File Entry 3
4 - File Offset offset to File Data 3
4 - File Size size of File Data 3
X - Filename pic1.bmp

File Data

© 2004 Mr.Mouse and WATTO

24

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

 File Data 1
 File Data 2
 File Data 3

Let’s walk through the reading of this file.

First we read the archive header and see that there is only 1 directory at the
root. This lets us know that we now need to read a single directory entry.

We read directory entry 1, called temp, and are told there are 2
subdirectories, and the directory entries for these subdirectories start at a
certain offset.

So we skip to the offset of the subdirectories. For each of the 2 subdirectories,
we need to read a directory entry. The first directory entry read is called
sounds and there are 2 files in it. The second entry is images and there is a
single subdirectory in it.

So we jump to the sounds offset and read 2 file entries, namely the file
entries 1 and 2. After we have read these, we jump back to the images offset
and read 1 directory entry, called temp, which has 1 file in it.

We jump forward into the temp offset and read the 1 file entry.

Using this method, we can build up a complex directory tree. This type of
archive is usually slightly smaller in size than the plain directory archive,
however the compromise is that it takes longer to read because you are
jumping all over the place. For this reason, and the fact that it is a very
complex structure, only a rare few games use this type of structure.

© 2004 Mr.Mouse and WATTO

25

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

Chunked Archives

Chunked archives store their files one after the other, with each file containing
a header giving information such as the size and type of the file. These
archives, probably the simplest of all archives, are examined by reading the
header of the file, skipping the file data, then repeating again for the remaining
files until you reach the end of the archive.

These archives are based on the Electronic Arts IFF85 standard that is used
for many files including WAV audio and AVI video.

Here is a sample graphic representation of the archive

Archive Header
4 - GRAIS (String)
4 - Archive Size
 File Header 1

4 - File Type (String)
4 - File Size

 File Data 1
 File Header 2

4 - File Type (String)
4 - File Size

 File Data 2
 …
 File Header n

4 - File Type (String)
4 - File Size

 File Data n

The archive header typically contains a 4-byte GRAIS, and a 4-byte field
indicating the size of the archive.

The file header typically contains a 4-byte type tag, and a 4-byte file size field,
however other fields may be included such as filenames and file IDs.

© 2004 Mr.Mouse and WATTO

26

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

Split Chunk Archives

These archives are similar to the chunked archive. However, each file is also
split up into chunks. Each file chunk is the same size, which allows efficient
use of buffers when reading the file.

Here is a sample graphic representation of the archive

Archive Header
4 - GRAIS (String)
4 - Archive Size
 File Header 1

4 - File Type (String)
4 - File Size
4 - Number of Chunks
4 - Chunk Size

 File Chunk 1
 File Chunk 2
 …
 File Chunk n
 File Header 2

4 - File Type (String)
4 - File Size
4 - Number of Chunks
4 - Chunk Size

 File Chunk 1
 File Chunk 2
 …
 File Chunk n
 …
 File Header n

4 - File Type (String)
4 - File Size
4 - Number of Chunks
4 - Chunk Size

 File Chunk 1
 File Chunk 2
 …
 File Chunk n

Note that as each chunk is a fixed size, the chunk size field need only be
specified once for each file. This field may even be specified in the archive
header if the chunk size is fixed for all files.

© 2004 Mr.Mouse and WATTO

27

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

External Directory Archives

External directory archives have the same structure as the directory or tree
archive. However, the directory data and the file data are stored in 2 separate
files. Naturally, the file that contains the file data is very large, and the
directory file very small.

Here is a sample graphic representation of the archive, where the directory
archive format is used

file.dir
Archive Header
4 - GRAIS (String)
Directory
 File Entry 1

4 - File Offset
4 - File Size
X - Filename

 File Entry 2
4 - File Offset
4 - File Size
X - Filename

 …
 File Entry n

4 - File Offset
4 - File Size
X - Filename

file.arc
File Data
 File Data 1
 File Data 2
 …
 File Data n

Note that the 2 files both have the same name, but different extensions. Also
note that the extensions are not fixed to the extensions given in the example,
they can be anything so long as the 2 files have different extensions.

© 2004 Mr.Mouse and WATTO

28

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

6. Checking Your Results

Common Types of Fields

Archives can literally contain fields for just about any purpose; however it
helps to know some of the more common fields as you then know what to look
for.

The following fields are very common in archives, so there is good probability
that you will run into at least one of these fields.
• File Size
• File Offset
• Number Of Files
• GRAIS

The following fields occur in some archives, but at significantly less probability
compared to those listed above.
• First File Offset
• Archive Name
• Filename Offset
• Filename Directory Offset
• Total File Data Size
• Total Directory Size
• Archive Size
• Number Of Directories
• Directory Offset
• File Extension / Type
• File ID
• Archive Version
• Filename Length
• Decompressed File Size
• Checksum
• Timestamp

© 2004 Mr.Mouse and WATTO

29

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

Validating Your Fields

When you think you know what a field means, it is important to validate your
findings. One of the simplest to check are the file offset and file size fields. If
you are presented with these two fields, simply add the first file offset to the
first file size and see that it matches the second file offset. Repeat this a few
times, and you can pretty much guarantee that those 2 fields are correct.

Another field that is easy to validate is the file offset field, if you choose a
good archive. All you need to do is go to the offset for each file and see if it
points you to a known file header. For example, if you open a sound archive
then a good header to look for is RIFF as it indicates a *.wav sound file.
Similarly, if opening a texture archive, look for common image headers such
as BM (*.bmp), GIF (*.gif) and JFIF (*.jpg). So if you pick the right archive, you
can see whether the file offset field is correct.

If you think that an archive compresses its files, and you have found the file
size field, try looking for a decompressed file size field for each entry – simply
look for a field that is always a little larger than the size for the file.

If you locate a directory in the archive, try to find a constant file entry size if
possible. For example, if each file entry contains a file size field and a file
offset field, then each file entry has a size of 8 bytes. Once you know this,
work out the size of the directory by finding the offset to the end of the
directory and subtracting the offset to the start of the directory. When you
divide the directory size by the file entry size, you will be able to find out the
number of files in the archive. This number may be stored in the archive
somewhere, usually at the start of the archive, so look out for it. Otherwise,
you can just perform the same calculation as you did above when you go to
implement this format in a program.

© 2004 Mr.Mouse and WATTO

30

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

Padding

So you think you have determined the fields and their data type, but for some
reason you can read a few of the entries and it just starts getting it all wrong.
This is most probably due to padding, the technique of adding null bytes to the
archive as a way of expanding the data to a fixed length.

For example, some archive types allow you to have a filename which is of an
arbitrary length, such as where the filename is stored followed by a null byte,
then the directory continues. As you can see, each entry will have a different
length depending on the length of the filename. This may not seem like a
problem, but when using buffers to read a file the buffer may become mis-
aligned. This is where padding comes in to play.

Entries in a directory are commonly padded to multiples of 4 bytes. If the
filename length is not a multiple of 4 bytes, a number of null bytes is added to
the end of the filename to bring it to the correct size. These bytes are to be
ignored; they are simply there for better reading of the file.

Let’s say you have a filename of length 7. The next multiple of 4 bytes that
occurs is the number 8 (4x2), so only 1 null byte needs to be added. Similarly
a filename of length 13 will need to be padded to a length of 16 (4x4) so we
need to add 3 null bytes.

Some archives also like to pad out their files to multiples of a number, typically
multiples of 2048 bytes.

© 2004 Mr.Mouse and WATTO

31

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

Filename Patterns

Filenames are a very important thing to find in an archive because it tells the
public how to open and edit the file. Some archives store filenames, however
many do not because they take up a lot of space to store, and normally the
game does not use the names. Archives that do store filenames have plenty
of choices concerning how to do just that.

If filenames are not used by the game, sometimes the filenames are stored in
their own directory, thus allowing the archive to be read quickly and efficiently
by the game (by simply skipping the filename directory completely). For this
structure, you are usually provided with the filename directory offset
somewhere in the archive (typically at the start of the archive), so you know
where to find the filenames. The filenames are usually stored in the archive
one after the other, in the same order as the files are stored in the archive.
Each filename is normally separated by a single null byte.

If the filenames are not stored in a separate directory, you may be lucky to
find the filenames stored with each file entry in the directory. Wherever the
filename is stored, they fit into one of a few different formats.

The most common format is the storage of the filename, followed by a single
null byte.

A slight variation on this format is that for buffering, the filename must fit a
multiple of a certain size. For example, filenames are usually padded to a
multiple of 4 bytes, where if the filename length is not a multiple of 4, null
bytes are added to the end of the filename to make it up to the correct size.
More information on this is found in the Padding section.

Another possible format is that each filename is stored in a fixed number of
bytes. If the filename is too short, the filename is expanded to the correct size
by adding null bytes to the end of the filename. If the filename is too long, it is
just cut off at the correct size.

On really good archives, a field just before the filename will actually tell you
the length of the filename. This field is usually either a 4-byte field, or just a
single byte. This is really handy because then you know exactly how long the
filename is. The filename may or may not have a null byte following it – if it
does then the null byte is normally included in the filename length field.

You may see that the overwhelming number of filename formats rely on the
filename being followed by one or more null bytes. For this reason, we
typically call a filename a null-terminated string, ie a string that continues until
you reach a null character. We should note here that, for those of you that
don’t know, a null byte is a byte of value 0. Also, a slight variation on these
formats, some archives will use the character 32 (the space character)
instead of the null byte.

© 2004 Mr.Mouse and WATTO

32

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

7. Encryption and Compression

7.1 The basics

In many cases, programmers use different techniques to either protect their
resources contained in GRAs, by encrypting them, or limit the size of the
archive by compressing the resources before creation of the archive.
There are many different methods to encrypt, which makes it hard to figure
out. Almost any programmer can come up with his own routine that will be
very difficult to crack just looking at the archive. We will still try to shed some
light on this subject, as encrypted and compressed archives will become more
commonplace in the future. There are many tools you can utilize to crack the
codes, besides the obligatory hex editor. For instance, try to get a
disassembler, such as WinDASM, and use it to open the game’s executable
with. With the mentioned tool, you can easily show every text string that the
game uses (such as archive filenames, but also resource names!). You will
see later why this can come in very handy! Not only that, but if you are a
sophisticated programmer, that knows how to interpret assembly code
(“machinelanguage”), you can try to backtrack whatever it was the executable
did to decrypt the code; more on that later as well.

Paramount to understanding encryption is knowledge of bitwise operations.
Bitwise operations can be regarded as simple logical steps where two bytes
undergo a bit transformation into a resulting byte. The primary operations are
And, Or and XOR (exclusive Or) What all of these do is change the bits in the
first byte depending on the bits in the second byte. Other operations include
NOT, SHL (shift-left) and SHR (shift-right) that act on a single byte.

AND

The AND operation sets a bit to true only if both operators (read BIT) are true
like this:

0 AND 1 = 0
1 AND 0 = 0
0 AND 0 = 0
1 AND 1 = 1

© 2004 Mr.Mouse and WATTO

33

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

Example: 12 AND 123

00001100 (12)
01111011 (123) (AND)
00001000 (8)

OR

The OR operation sets a bit to 0 only if both operators are 0.

0 OR 0 = 0
1 OR 0 = 1
0 OR 1 = 1
1 OR 1 = 1

Example: 12 OR 123

00001100 (12)
01111011 (123)
01111111 (127)

XOR

The Exclusive OR operation sets the resulting bit to 1 only if one of both
operators is true.

0 XOR 0 = 0
1 XOR 0 = 1
0 XOR 1 = 1
1 XOR 1 = 0

Example: 12 XOR 123

00001100 (12)
01111011 (123)
01110111 (119)

© 2004 Mr.Mouse and WATTO

34

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

NOT

The NOT operation is not really like the previous, in that it only applies to one
byte. What it does is invert the bits in the byte:

00001100 (12)
11110011 (243)

SHL

The shift-left operation shifts the bits in a byte to the left, discarding the left-
most bit and completing the bits with a zero at the right end. Basically, one
shift-left is the same as n*21 (with n being the original byte). Two shift-lefts is
n*22, three n*23 etc. up to a maximum of 255 of course, after that bits are
discarded.

00110011 (51)
01100110 (102)

SHR

The shift-right operation shifts the bits in a byte to the right, discarding the
right-most bit and supplementing from the left with a 0 bit. This is the same as
a rough division by two, rounded to the lowest value in case of discarding a
bit.

00110011 (51)
00011001 (25)

What can you do with these operations? Well, there are a lot of useful things
you can do, like super-fast divisions by two, color inverting, but also turning
specific bits on and off. Hardware, such as graphic cards, encodes specific
functionality in bits, not in bytes. For example, suppose a screen may have a
resolution of 640x480 pixels, but we only have screen memory for 4 banks of
320x200 bytes. How can we let the graphic card know which pixel to show in
what color. Our graphic card will agree to a resolution of 640x480, but only if
we divide the bytes into two and do some bank switching. What we get is
rows of 320 bytes that are each actually two pixel positions next to each other.
Note that each pixel only has 4 bits to work with so the maximum color value
is all 4 bits set (15). Thus, we have a resolution of 640x480x16. Okay, but
suppose we want to set the 4th pixel on screen from the left at the top row to
color 15? But we want to keep the 3rd pixel the way it is? We should address
the 2nd byte in memory and only change the high part of the byte (the left 4
bits). Now, we can’t just say, byte2 = 15, because that would set the right part
of our byte and clear the fourth pixel! We saw above that we have a way of
keeping certain bits in a byte as they were. We need to use the OR operation,
setting the first 4 bits of our color byte to 0 and the top 4-bits to the color we
want the fourth pixel to have. This is easy! Remember shift-left (SHL)? We set

© 2004 Mr.Mouse and WATTO

35

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

our color byte to 15, SHL it 4 times and then OR the 2nd byte in screen
memory with the resulting color byte:

1. color byte = 00001111 (15)
2. SHLx4 = 11110000 (240)

There, now suppose the second byte in screen memory is 178, then we do
178 OR 240 to set our pixel of interest:

10110010 (178) – note that the third pixel (the lower half) has
 color 0010 (2), and the fourth color 1011 (11).
11110000 (240) OR
11110010 (242)

We did it! We changed the fourth pixel into color 15 and kept the third pixel in
color 2.

This was just one of many uses of the bitwise operations.
Here it is important to realize you can do some hefty encrypting with this as
well, especially if you combine them to good effect. The XOR operation is
used many times in encryption techniques, so if you’re looking to decipher
some archives, remember to include XOR in your way of thinking.

7. 2 Encryption
One can ask a very simple question: what is encryption? Basically, encryption
is a way to mask the true nature of a script. Files are nothing more than
scripts that use up to 256 unique characters (bytes!) to “write” a “story”. Every
one of you has probably done some word puzzles like anagrams. Anagrams
are just another, be it simple, way of encrypting a word or sentence. However,
true encryption requires people to be able to reverse the encryption in a
logical manner. Usually, this is not the case with anagrams. There’s no
universal logic applied when people create anagrams. However, when
programmers encrypt their files or parts of their archives (usually those parts
that contain important information, such as resource names, offsets and
sizes) they will want their game editor to be able to de-encrypt (decrypt) the
archive. As said, there’s not just one way to encrypt and that makes it
impossible to cover this subject to complete satisfaction. However, as most
encryption techniques are purely logical in nature, the smart investigator can
come a long way in determining the rudiments of the technique or even crack
the code as a whole. How to proceed?

First of all, you should be absolutely positive that a part of the archive you are
looking at is indeed encrypted. There’s no point in trying to decrypt a pile of
bytes that were not encrypted in the first place. So, (1) identify an encrypted
block of bytes. If you are sure, try to find more examples of files that use this
supposed technique. In other words, if you have discovered a putative but
encrypted GRA, (2) try to find more and use them to compare specific parts;
many games have more than one archive, but most use only one way of
archiving. If you are positive that you are dealing with an archive and you can

© 2004 Mr.Mouse and WATTO

36

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

identify some directory structure, you can also use this structure to compare
the way individual (encrypted) directories entries are shown in the one
archive. (3) Use a good disassembler to open the game’s executable to
search for resource name strings. You might just find a lot of strings there. If
you can identify a resource by name, and you have already figured out where
in the archive this resource is saved, you have a good reference for your
decrypting. Suppose you have stumbled on a GRAF that encrypts the names
of the resources before saving this information in an archive. Upon
examination of the executable you may have found a string
“/textures/weapons/pistol.pcx”. Suppose furthermore that you already
extracted some of the textures as nameless pictures. If you recognize the
pistol texture from the game, you then have something to work with while
decrypting, as you can compare the encrypted string with the decrypted.

But how about the actual decrypting? Where to start?
As said, there’s not just one method of encryption. One trick that will tell you
exactly what is going on is to run the executable from a disassembler and
reverse engineer the assembly code that takes care of the encryption. This
requires substantial knowledge of assembly language, though, and may be a
slow and largely unrewarding process. Nevertheless, if you can pinpoint the
location of the encryption/decryption code this may help you understand parts
of it anyway and may be very worthwhile in the long run. As your
understanding of these assembly processes grow the more easily and
speedily you will figure these things out!

Pen and paper ready!

Without the aide of reverse engineering it is still possible to find out how
encryption works. Pen and paper are two very handy tools that can help you
solve the puzzle. We will try to explain the process of unravelling the Painkiller
.PAK string encryption technique.

Painkiller Encryption

When the developers of the game Painkiller first released a demo, fans
quickly discovered that the game used adapted PKZip files to store the
resources (so called .PAK archives). Apparently, the coders did not want fans
to have access to the resources, because in the second demo and the first
retail version, they used another, more difficult to hack method of storing
resources. While they used straightforward properties such as resource size
and resource offset variables, they encrypted the filename of the resources. In
addition, they changed the method to compress the actual resources to Zlib
compression. Quickly people had got the whole format explained, and could
extract the resources, but for the encrypted filename. That proved the hardest
puzzle to solve.

© 2004 Mr.Mouse and WATTO

37

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

In the archive “scripts.pak” the first few encrypted filenames strings are shown
in ASCII like this:
cLHLCB.P[\XIM.m,)
lOOO\A.[WVSJ/4j/&#_
iJRRYD.IR*&1/&'(a8=<
…

Or, in hexadecimals:
63 4C 48 4C 43 42 1C 50 5B 5C 58 49 4D 2E 6D 2C 29 20
6C 4F 4F 4F 5C 41 1B 5B 57 56 53 4A 2F 34 6A 2F 26 23
69 4A 52 52 59 44 16 49 52 5C 2A 26 31 2F 26 27 28 61 38 3D 3C

The first thing you do is take a good look at what you see. Try to see what can
be seen. That may sound cryptic, but it’s true.
In our case, what do we know? Well, we know that the strings we are
examining represent some king of encrypted text. We also assume these
strings are in fact filenames. Good. That gives us something to go on. In
addition, you did not know this before, but we tell you now: the 32-bit (4-byte)
value that precedes each string is exactly the size of the string in bytes, and
thus it is probably save to assume that the characters from the encrypted
string match in position the characters of the original string. This is very
important. Because with this knowledge we can make other assumptions:

Filenames usually have the following structure:

Directory\directory\filename.extension
(the number of directories may vary)

The extensions of filenames are usually 3 bytes in length.
Like: “text.doc”, where the “doc” is the extension.

Right, now take a good look at the strings. You will notice that they all start
with a byte somewhere in the &h60+ range, followed by characters in the
&h40-&h60 range, followed by a single byte in the &h10+ range. Wait a
minute! The standard filename structure as shown above starts with a capital
character and is then followed by small characters, followed by a backslash
(e.g. Directory\). You should know that non-letter characters mostly have an
ASCII-value (decimal value) which is far from letter-characters. Thus, we
recognize this pattern in the encryption example:
<capital><small characters><backslash>…etc. Without knowing the original
value of the letter characters, we can assume that the encrypted values
&h1C, &h1B and &h16 in the subsequent strings are in fact ‘\’, or &h5C! We
keep in mind that this may also be a forward slash though, ‘/’, or &h2F.
Close examination of the other characters in the strings reveal that the last
three characters of each string are all preceded by a byte value in the &h60+
range. In the standard filename structure the last three characters commonly
represent the extension of the file, with the character before the extension
always a ‘.’ or &h2E. So it’s save to assume the following structure of the
encrypted strings:

© 2004 Mr.Mouse and WATTO

38

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

<Capital, small characters>’\’<small characters>”.”<small characters>

Or, in function:

<Directory>’\’<filename>’.’<extension’.

And applied to the example of encrypted string 1:

<cLHLCB>’\’<P[\XIM>’.’<m,)>

However, we still don’t know what, for instance, “cLHLCB” stands for.
Apparently there’s some algorithm at work here. Remember that you have
logical ways to alter existing bytes, using XOR, AND and others? Let’s
consider the often-used XOR. Could we use XOR to create such a string?
First of all, you’d need to be able to “seed” the XOR encryption: Every string
has a first letter, in our case the capital character. To get a XORed value for
this capital, you need another byte to XOR it with. This is your “seed” value.
Next, you perform some trick on the XOR value, before you use it to XOR the
second character in your string, then you perform the trick on the XOR value
again to XOR the third character and so forth. The crucial XOR thing is: by
XORing a value by the same value it was XORed with, you retrieve the value
that was XORed. In our case, a XOR method much like the one described
was assumed, also because some people used a disassembler to look at the
encryption code, and came across some XOR statements. And that really fits
nicely, because why go to the trouble of encrypting your filenames, if you
won’t need to decrypt them.
Thus, there must be some algorithm at work here which can be used in
reverse as well: by applying the algorithm to the original text you will get the
encrypted text, by applying the same algorithm to the encrypted text you will
get the original text.
XOR is one trick you can use to create just such an algorithm. We know that
we have a ‘\’ (or ‘/’) and a ‘.’ in our strings. Let’s take the first string. We can
find out what the value must have been that was used to XOR our ‘\’ or ‘.’ and
resulted in the encrypted code for these characters &h1C and &h6D
respectively. Simply XOR them with the original value!

Tip: In Hex Workshop, you can select any range of bytes and XOR it with a
value of your choice. Click on the “^” button at the top toolbar to do so. In this
case, you would select a byte of interest and select an 8-bit unsigned value to
XOR it with. The outcome would replace the selected byte.

Thus &h1C XOR &h5C = &h40, &h6D XOR &2E = &h43.
But we kept in mind that the proposed backslash may also be a forward slash.
That would give &h1C XOR &h2F = &h33.

Now, let’s consider this difference in XOR value used. The distance between
the back- or forward slash and the dot is 8 bytes. The difference in XOR value
used is either &h43 -&h40 = &h3 (3) in case a backslash was used, or it is
&h43 -&h33 = &h10 (16) in case of a forward slash. Could it be as simple as
adding two to the XOR value (hence 16/8 bytes distance = 2) for each

© 2004 Mr.Mouse and WATTO

39

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

subsequent XOR you do? We can test this by starting from the forward slash
(if the theory has a chance we are dealing with the forward slash after all) and
XORing the string characters to the last character in the string. Thus, we will
use &h33 for the forward slash, then use &h35, &h37, &h39, &h3B, &h3D,
&h3F, &h41, &h43 (our dot!), &h45, &h47 and &h49 respectively to XOR the
next characters.

.P[\XIM.m,) = /electro.ini

So, it is indeed like that. Now we do this for the whole string (i.e. start from the
forward slash with the XOR value of &h33 and subtract 2 from this value,
XOR the characters all the way to the first):

cLHLCB.P[\XIM.m,) = Decals/electro.ini

So the first string is decrypted! But we still do not know how the “seed” XOR
was calculated. The first character in our original string is the letter D (&h44).
The encrypted value was &h65, thus the XOR used was &h27 (39). This is
our seed value for the XOR method of encrypting the string. But how was it
calculated?

We should first check the other strings and see what seed value we obtain for
those. The above-described method (pinpoint the encrypted forward slash,
XOR it with &h2F, use the XOR value to XOR the next encrypted characters
after subsequent additions of 2, and the previous encrypted characters after
subsequent subtractions of 2) will give:

lOOO\A.[WVSJ/4j/&#_ = Decals/molotov.ini
iJRRYD.IR*&1/&'(a8=< = Decals/rockethole.ini

We find that the encryption of the second string was “seeded” with &h28 (40)
and the third with &h2D (45). You should notice they are all somewhat in the
same range.
We assume that the program that wishes to decrypt the strings (like the
developers’ game editor for instance) can get its “seeds” based on variables
from the archive, and this should be specific per string (or in effect per
resource). Let’s see what other variables we have. When you look at the
whole GRAF of the Painkiller .PAK files you will see resource offsets and
sizes, as well as the size in bytes of the filename strings, among other stuff.
Now compare the sizes of the strings. The first is &h12 (18), the second also
&h12 (18) and the third is &h15 (21). These variables you find as 32-bit values
saved just before the encrypted string. Compare the “seeds” we found for
each string. The first was &h27 (39), the second &h28 (40) and the third &h2D
(45). Notice how the first and second string are equal in size and their “seed”
is only a difference of 1.
To start with, let’s propose that the encryption method uses the string size
variables to calculate the “seed”. Strings 1 and 2 both have the same size, so
in theory they should end up with the same “seed”. However, string 2 has a
“seed” value of 1 higher than string 1. Well, it is the second string after all, so
perhaps the method will take into consideration the position of the resource in

© 2004 Mr.Mouse and WATTO

40

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

the file (the first one is file 1, the second file 2 and so forth). When the seed
would be calculated, the final value could be incremented with the position in
the file. This way the difference between the seed value of string 1 and 2,
having the same size value, would indeed be 1. This then implies that the
calculated “seed” value of &h27 less the position in the file for the first string
would actually be &h27-1=&h26 (38), for the second &h28-2 = &h26 (38) and
the third &h2D-3=&h2A (42).
Assuming the above is correct, then how can we obtain the “seed” value of 38
for the first string? This is not easy, but we just try a number of ideas. The size
variable for the first string is &h12 (18). If we do a shift left of this number
(multiplication of 2) we get &h24 (36). This is rather close to 38, isn’t it? How
about the third string? A shift left of &h15 gives &h2A (42). Hmm, this is
exactly the seed value of the third string (not adding the position in the file)!
Thus, if we calculate it this way for the first and second string we get a value
that is 2 lower than what is should be, and for the third the difference between
our calculation and what it should be is 0. Perhaps we are mistaken, and the
method is different? Well, we are trying to understand, and obviously we
haven’t cracked it completely. We will still stay on track though and keep the
shift left as it is rather close to the actual “seed” value.
More information is needed at times like this, and it is advised to apply your
proposed methods on many cases of whatever is encrypted. In our case, we
must check more strings to map potential differences in shift left value of the
size variable and the “seed” value. We will not show it here, but we’ll present
the number of possibilities that you will get if you do so. We find that our shift
left of the size variable differs from the “seed” value in this range:

shift left (size) – seed value = {-3, -2, -1, 0, 1}.

So the maximum difference is 3 less than the “seed”, or the other way, 1 more
than the “seed”. This does point to some kind of tabular method, although the
range is not very symmetrical. More symmetrical would be a range of {-2, -1,
0, 1, 2}. Let’s see if we can alter our method so we have values that differ in
that more symmetrical range. What would be needed? Well, all range values
would have to be incremented with 1, right? –3 + 1 = -2, -2 + 1 = -1 etc.
For us it means that our shift left value of the size variable is one off.
Remember that the common operation shift left shift all bits one to the left,
discarding the left-most bit. However, there are also adaptations of the shift
left method. First, there’s rotate left that will rotate the bits one to the left, and
the left-most bit will be rotated to the right-most bit. Thus, if the left-most bit is
set it will transfer to the right-most bit. If that is the case it will result in a
decimal calculation of value * 2 + 1. And that is what we need as well.
However, if the left-most bit is not set, the right-most bit will simply be 0. In our
case of the size variables, the left-most bit is never set, so the rotate left
method will not get us where we need to be. The second adaptation of the
shift left method is inclusive shift left. This will shift the bits 1 to the left, but
now set the right-most bit as well, instead of adding a zero-bit. To do that just
shift the bits left and add 1! This method will get us where we want to be.

© 2004 Mr.Mouse and WATTO

41

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

The method to calculate the “seed” so far is:

Shift left (size variable) + 1

And our “seed” value will differ from the real “seed” value in the range:

{-2, -1, 0, 1, 2}

Apparently, the encryption process has some way of telling when to add or
subtract these values from the result of the shift left + 1 operation, as if looking
them up from a table. How would this table look like, and how would it know
where to look in the table? The only way to get a hint of this process is by
examination of multiple strings and comparing the “seeds” with the size
variable, as we will assume that the size variable is also needed to look up the
variable from the unknown table (as string 1 and string 2 only have in
common the same size, this shows that the encryption uses only this variable
to encrypt).

So, make a table from a size variable of 0 upwards. Look at the strings and
find the seed, write down the range value it used (-2 or -1 and so forth). Well,
perhaps you won’t find strings that are 0 in length, but just fill in those that you
do find.

Thus the table will be a single dimensional table like:

Size Code
0 Code1
1 Code2
2 Code3
3 Code4
…

If you do this, you will discover the following table:

© 2004 Mr.Mouse and WATTO

42

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

Size (hexadecimal) Code
0 -2
1 -1
2 0
3 1
4 2
5 -2
6 -1
7 0
8 1
9 2
A -2
B -1
C 0
D 1
E 2
F -2
10 -1
11 0
12 1
13 2
14 -2
15 -1

Etc.

Let’s examine the first string again. It has a size of &h12. That means the
code will be 1. The seed will be calculated like this then:

(Shift left (&h12) + 1) + 1 (from file 1) + 1 (Code) = &h27 !

The second string:

(Shift left (&h12) + 1) + 2 (from file 1) + 1 (Code) = &h28 !

The third string:

(Shift left (&h15) + 1) + 3 (from file 1) + -1 (Code) = &h2D !

These are the XOR values that will be used on the first character of the
original string. For each subsequent character this value will be incremented
by 2. The complete encryption algorithm is then:

Painkiller .PAK string encryption:
EncryptedStringCharacter (n) =
OriginalStringCharacter(n) XOR (shift left (string size) + 1 + FileNumber +
Code(string size) + n*2)

(Where n starts at character position 0)

© 2004 Mr.Mouse and WATTO

43

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

Encryption methods are with many, but so are your brain cells

The Painkiller .PAK string encryption is just one of many ways to encrypt and
there’s no universal tool or process to decrypt all of them. Many archives may
encrypt whole resources, while some may use irreversible encryption
techniques to address resource names (Microprose .CAT archives from
Gunship! and others). As the uncovering of the Painkiller .PAK string
encryption should show, there’s a lot of guessing and second-guessing
needed to solve the puzzle, besides a logic mind. You should train yourself in
recognizing logical patterns; think along lines of file structures, bytes and bits.
By using a pen and paper you can write down notes, compare things more
easily, write down binary values, and try different logical methods to get where
you need to be. It really is helpful. In conclusion, the most important ability you
need to have to solve encryption techniques is the ability to recognize logical
patterns. Good luck!

7. 3 Compression

Like encryption, the subject of compression is one we will not be able to
address to our full satisfaction. There are many ways to compress (see the
appendix for links to websites that cover this subject) and different techniques
are needed to effectively compress files of alternating type.
However, we can point out some ways to discover the compression method
used.

ZLib compressed files

ZLib (http://www.gzip.org/zlib/) is a free and open source project that is used
in many games to compress files and archives, and is comparable in power to
others such as RAR or PKZIP. The fact that it’s free makes it used a lot, as
there are no licensing deals needed. But how do you know if a file is ZLib
compressed?

Now, this is probably one of the easiest ones around to spot. Check out the
screenshot of HW with an open .TRE file (the format from Star Wars)

Figure 2. ZLib compression technique can be identified by the ‘x’ as the first
byte.

In the figure, we have highlighted a piece that begins with the letter ‘x’ (&h78,
120). When you encounter such a piece and you have reason to suspect an
individual file begins at that location in an archive of your interest, you may
wish to treat it as a ZLib compressed file. You do have to make sure though.
Suppose you have figured out that a file starts at a certain offset in an archive,

© 2004 Mr.Mouse and WATTO

44

http://www.gzip.org/zlib/

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

and in addition you have found variables that tell you the size of this file. Now,
just copy and paste the whole putative file into a new file and save it. The next
part is tricky as you must have had some experience in unpacking ZLib files.
What you need is a simple program that will unpack a standard ZLib-
compressed file. In it, you must be able to point to the file and tell it to unpack
it. It should then tell you if it was a success or not. Some of these programs
will also require you to specify an “uncompressed” size (the original size of the
compressed file). With luck, you have already found this variable in the
archive as well. Remember to look out for a variable that is slightly greater
than the “compressed size” variable when you think you are dealing with
compressed files. You can either just create your own program that will try to
unpack any given file using zlib.dll, or use existing ones. Check out the
http://www.gzip.org/zlib/ website for more information.

PKZip compressed files

Many games nowadays use the ‘standard’ PKZip compression to compress
individual files, and some even just pack all their files into an actual .ZIP file,
now and then changing the file extension for their own purposes. Examples of
the latter include Quake 3 .PK3 files, Thief 2 .CRF files and Fall-out Tactics
.BOS files. Some however use the technique itself on individual files and pack
them into an archive of their own format. This will not be easy to determine.
You may get as far as knowing or at least assuming a resource is
compressed, determining with certainty that it is PKZip-compressed is not
possible without in depth investigation on the one hand, or a strategy of
elimination on the other. This hold true for many if not all compression
techniques you wish to identify.

In depth?

One option is to open the executable that is likely to process the GRA in a
disassembler. This is extremely time-consuming however if you have not got
a vast experience in assembly language. The trick is to trace the code that
handles the uncompressing of resources and subsequently reverse engineer
the method! Naturally, this is not the easiest of tasks. If you wish to go ahead,
we recommend a disassembler such as WinDASM (no longer in development,
but one of the best around, see if you can find it on the web).

Eliminate them!

Another strategy is to eliminate possible candidate-compression routines by 1.
simply trying them on your file and see if they succeed or 2. comparing the
structure of you file with those of files that were compressed using a certain
technique. Eliminate all those you can find one by one using this strategy until
you (hopefully) find the one you are looking for. You should increase your
knowledge base on compression techniques as many a game-coder thinks its
cool to use some obscure technique from the past.

© 2004 Mr.Mouse and WATTO

45

http://www.gzip.org/zlib/

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

Snoop around the executables for clues

You can also use programs such as WinDASM or Hex Workshop to look
around the games executables (e.g. .EXE, .COM, .DLL etc.) and see if you
identify a piece of text that will tell you more. Sometimes you can find names
of functions that are called by the program, or you can find clues in error
messages that are saved in the executables. For instance, you could find a
‘LZHUncompress’ function name, that may point to the .LZH compression
technique, or you could find an error message ‘RAR: Error in CRC” that tells
you .RAR was used. Likewise, some techniques require a licensing deal with
the patent holders, so you should examine the credits of a game for a
candidate technique (e.g. “Bink Video Compression”).

© 2004 Mr.Mouse and WATTO

46

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

8. Worked Examples

In this chapter we will go through the process of cracking a format step by
step, from opening it for the first time in Hex Workshop to the final format
presentation. To do this, we will cover a relatively easy format. In the
appendix you will find more complete examples. Let’s start off immediately,
because the sooner you get to grips with it, the sooner you can start cracking
your own!

Quake *.PAK

Games using the Quake (1 or 2) engine save their resources in archive with
the .PAK format. How did we tell? Well, when we encounter a new game, and
we want to know which files we have to examine we focus on A. large files
and B. the title of the file. In the case of Quake we really find only one large
file, pak0.pak, and the title and extension clearly indicate it may be some kind
of package! We recommend that you download the free Quake2 demo, as the
pak0.pak from the demo will be used in this tutorial.

Open the archive and check out the basics:

A. Any GRAIS visible?
B. Determine the size of the archive
C. Locate filename strings if possible

� If not at the start of the archive, go through the whole
archive, starting from the back

When we open the demo’s pak0.pak with Hex Workshop we see the following
(Figure 2A).

Figure 3A. Start of Quake 2’s pak0.pak file in Hex Workshop.

The status bar at the bottom shown the size of the file at the bottom right:
49951322 bytes! Also, you can see the cursor is at offset 0. Immediately you
notice that the ASCII window shows something interesting: the first 4 bytes
make up a plausible English word, “PACK”. Could this be our GRAIS? Quite
possibly! We select the 4 bytes that make up the word and right-click the
selection to get the context menu. Here we select Add Bookmark… and write
down ‘GRAIS’ in the description field that we are shown. Before we click Ok
we set the Interpret data as… field to ‘string’, as we want HW to show the
appropriate string value in the Results Window (see User’s Bookmarks in
Figure 1). Good, next we click Ok and you should see something similar to
Figure 2B in the results window (by default bottom right).

© 2004 Mr.Mouse and WATTO

47

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

Figure 3B. A bookmark in the Results Window of Hex Workshop.

So now we have determined that the first 4 bytes represent the GRAIS and
have book marked it accordingly. We could colour map it as well, to easily find
it back on screen. It is up to you if you wish to do that.

We continue to examine the following bytes. We need to find out if there are
some filename strings.

We can’t see any at the beginning of the file, can we? Apart from PACK we
don’t see anything that even resembles a string. Then we remember that in
many instances resource information, such as filenames, are saved at the
back of the archive (in a Tail).

Examine the end of the file for filename strings

Simply hit the End key on your keyboard to show the end of the pak0.pak file.
You should see something like Figure 2C.

Figure 3C. A snippet from the end of Quake 2’s pak0.pak (demo version).

Oh! Check out those strings! Something like
models/weapons/v_machn/skin.pcx is quite obviously a filename, no doubt
about that. And there are many more. But that’s not all. What else is there to
notice? Well, let’s take a closer look at the length of these strings. Just select
one string (drag your mouse pointer from the first character of a string to the
last while holding the left mouse button).

• TIP: During selection, notice how the status bar at the bottom of HW

shows a value for a variable named Sel:. This shows the size of the
current selection in hexadecimals! As you drag, this value is increased or
decreased when you select more or less characters respectively.

© 2004 Mr.Mouse and WATTO

48

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

Did you select a string? Read the size of the selection (in effect, the string) in
the status bar. Now select another string. Once again, read the size of it. After
a couple of times you will notice that these strings have variable sizes. So, the
filenames can be any size in this archive apparently. But would this also mean
that we have resource entries in this putative tail that are of variable length?
Let’s check this. As most GRAFs go, filenames and other information such as
file offsets and sizes are all saved together into individual entries (blocks).
Logic would dictate that each variable would be saved at the same place in
the block. So, for argument’s sake we’ll assume that the program that created
the archive saves the filename of a resource first, and then other information
about the resource. If this is so, then we can easily see wether these blocks
are also of variable length. To do that, first put the cursor on the first character
of a filename string. Now select every byte until you reach the first character
of the following filename string. In Figure 2D we have done this.

Figure 3D. A block (entry) in the tail of Quake 2’s pak0.pak is selected.

We then read the hexadecimal size of this block: 0x40. Or in decimals: 64.
When we select multiple entries, each time the size of the entry will be 0x40.
This tells us that the size of each block is set, regardless of the filename
string, which we have identified as being variable.

Let’s go back to the start of the file. Hit Home on your keyboard. Before we
can go on we need to know how any program that opens .PAK archives
knows where to find these filename strings. Well, if it is truly a tail and not just
some chunk of the last resource saved in the archive, there are usually two
possibilities. First, it may be that the program knows the information is at the
back, and perhaps even at a set offset from the end of the file. Second, the
program does not know where to find the start of the tail and needs to be told.
The variable that points to the address of the tail is for 99% found at the start
of the archive. That’s why we jumped back to the start! Now let’s examine the
bytes that come after the PACK string more closely. Set the cursor on the first
byte after the ‘K’. Look at Figure 2E to compare.

© 2004 Mr.Mouse and WATTO

49

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

Figure 3E. At the start of pak0.pak. The cursor is at offset 4. The Data
Inspector show the relative (interpreted) values at this location.

The bytes are, in sequential order, DA 1D F9 02 80 14 …. Hold on! We
remember there are different data types, ranging from 8 bit to 64 bit values.
Let’s see what we get if we interpret the bytes at this offset as different data
types. Look at your Data Inspector. Notice how the values differ per
interpretation. Typically, the first four bytes ‘look’ like something valid. Why?
Most variables in an GRA are 32-bit, and the most significant byte (the fourth
or right-most byte) in our 32-bit type is a low value. Once you spent a lot of
time on this type of puzzling, you will understand why a 4-byte sequence with
a low-value fourth byte might raise your attention.
In this case, if we interpret the value at offset 4 as a 32-bit data type, the value
is 49880538 (the Long datatype).
Now wait a minute, doesn’t this value sound familiar? Yes, it does, as the size
of the file is 49951322. Our long value is less than the size, but only just! Let’s
see if this might be a pointer to somewhere fun in the GRA. Select the 4 bytes
that make up the long value. Notice how the Data Inspector only shows 32-bit
or less values as you do that. Now, right-click the selected bytes and select
GoTo->Offset 0x02F91DDA. You have jumped to offset 49880538 (see Figure
2F).

Figure 3F. The cursor is at location 49880538 in pak0.pak.

Bingo! You see the cursor is at the first character of a filename string:
env/unit1_rt.pcx. Scroll up to see that no other filename strings come before
that one. You have found a pointer to a tail! Good work!
And as we saw before, this tail runs all the way to the end of the file. Let’s
calculate the tail size by subtracting the tail pointer from the size of the
archive.

• Tip : Go to the Tools menu and select Hex Calculator. This is a handy tool

that will let you do basic maths, and convert decimals to hexadecimals and
back.

The tail size is 70784. Remember that we have previously shown that each
entry the tail is 0x40 or 64 bytes in length. Thus we can also calculate the
number of files in the file: 70784 / 64 = 1106! This may come in handy if we
wish to search for variables such as number of files in the GRA.

© 2004 Mr.Mouse and WATTO

50

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

For now, let’s go back to the tail pointer. Hit Home. You may bookmark and/or
colour map the 4 bytes that represent the tail pointer if you wish. Then, set the
cursor on the offset to the right of the tail pointer (offset 8). Cast your eyes on
the Data Inspector. If we interpret the value as a 32-bit long we get 70784! We
have found the tail size variable in the GRA.
The next 32-bit variable at offset 12 is too large to point to anywhere in the
file. We can check out some more offsets, to see if there’s a 32-bit (or 16-bit)
value of 1106 somewhere at the start. After a while, we conclude there’s
none.

Up to now we have identified a header in the pak0.pak (the GRAIS at offset 0,
the tail pointer at offset 4 and the tail size at offset 8). 12 bytes in total.
Furthermore, we have found that the tail consists of 64-byte entries or blocks
with the first variable in these blocks a filename string of variable length.

We still need to do some more investigating of the tail. The tail might reveal
other important information about the resources saved in the pak0.pak file.
Let’s go to the start of the tail again (Figure 2F). See how the first filename
entry (env/unit1_rt.pcx) is followed by a chunk of 0-value bytes. Apparently,
there’s some Padding going on. Let’s follow the trail of 0’s all the way to the
second filename string. The trail is broken 56 bytes from the start of the first
filename string and 8 bytes before the second filename string. You can see a
byte value of 0x0C (12) at this offset, followed by three 0-bytes. 8 bytes could
make up two 32-bit values, so let’s see what we get if we interpret these 8
bytes like that. The first long value is 12, the second long value is 23086.
Intuition will tell you that the first may very well be a pointer to the start of the
resource (resource offset) as it is A. very low and B. we did not find any
recognizable variables starting from offset 12 upward. The second long in our
tail entry might then represent the size of the resource.
We can check all of this easily, especially if we are dealing with an archive
that saves entries in the tail in the same order that the actual resources are
saved in the archive. First we must make sure we find some long values at
the end of the following entries in the tail as well. This is indeed the case.
Second, we set the cursor at a position 8 bytes before the second filename
string (env/unit1_rt.tga). The two long variables at this offset are 23098 for the
putative resource offset and 196626 for the resource size. Now, subtract the
first resource offset from the second : 23098 –12 = 23086. See how this is
exactly our first resource size? We have solved the puzzle! Of course, we will
check a bit further up-‘stream’ to make sure we aren’t fooled by coincidence.
Having done that we are sure about the following GRAF for pak0.pak:

© 2004 Mr.Mouse and WATTO

51

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

id Software .PAK (Quake engine)

General outline:
Offset Type Description
0-3 String GRAIS (‘PACK’)
4-7 32-bit (long) Tail pointer
8-11 32-bit (long) Tail size
12-Tail pointer Resource data Resource Data
Tail pointer-End of file N Blocks of 64 bytes Resource Information

Tail (single entry):
Relative offset Type Description
0-55 Null-terminated string,

0-padded to size of 56
bytes

Resource filename

56-59 32-bit (long) Resource offset
60-63 32-bit (long) Resource size

If we would want to read from a .PAK file, we could just load tail entries until
we reach the end of the file. If we would like to know just how many resources
there are in a .PAK file, we simply read the value of the tail size and divide it
by 64! This may be useful if you wish to reserve memory before you read tail
entries.

There, we’ve cracked it!

© 2004 Mr.Mouse and WATTO

52

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

9. Appendix

A: Binary Æ Byte Number Table
Bit 7
(27)

Bit 6
(26)

Bit 5
(25)

Bit 4
(24)

Bit 3
(23)

Bit 2
(22)

Bit 1
(21)

Bit 0
(20)

Value

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 2
0 0 0 0 0 0 1 1 3
0 0 0 0 0 1 0 0 4
0 0 0 0 0 1 0 1 5
0 0 0 0 0 1 1 0 6
0 0 0 0 0 1 1 1 7
0 0 0 0 1 0 0 0 8
0 0 0 0 1 0 0 1 9
0 0 0 0 1 0 1 0 10
0 0 0 0 1 0 1 1 11
0 0 0 0 1 1 0 0 12
0 0 0 0 1 1 0 1 13
0 0 0 0 1 1 1 0 14
0 0 0 0 1 1 1 1 15
0 0 0 1 0 0 0 0 16
0 0 0 1 0 0 0 1 17
0 0 0 1 0 0 1 0 18
0 0 0 1 0 0 1 1 19
0 0 0 1 0 1 0 0 20
0 0 0 1 0 1 0 1 21
0 0 0 1 0 1 1 0 22
0 0 0 1 0 1 1 1 23
0 0 0 1 1 0 0 0 24
0 0 0 1 1 0 0 1 25
0 0 0 1 1 0 1 0 26
0 0 0 1 1 0 1 1 27
0 0 0 1 1 1 0 0 28
0 0 0 1 1 1 0 1 29
0 0 0 1 1 1 1 0 30
0 0 0 1 1 1 1 1 31
0 0 1 0 0 0 0 0 32
0 0 1 0 0 0 0 1 33
0 0 1 0 0 0 1 0 34
0 0 1 0 0 0 1 1 35
0 0 1 0 0 1 0 0 36
0 0 1 0 0 1 0 1 37
0 0 1 0 0 1 1 0 38
0 0 1 0 0 1 1 1 39
0 0 1 0 1 0 0 0 40
0 0 1 0 1 0 0 1 41
0 0 1 0 1 0 1 0 42
0 0 1 0 1 0 1 1 43
0 0 1 0 1 1 0 0 44
0 0 1 0 1 1 0 1 45
0 0 1 0 1 1 1 0 46
0 0 1 0 1 1 1 1 47
0 0 1 1 0 0 0 0 48
0 0 1 1 0 0 0 1 49
0 0 1 1 0 0 1 0 50
0 0 1 1 0 0 1 1 51
0 0 1 1 0 1 0 0 52
0 0 1 1 0 1 0 1 53
0 0 1 1 0 1 1 0 54
0 0 1 1 0 1 1 1 55
0 0 1 1 1 0 0 0 56
0 0 1 1 1 0 0 1 57
0 0 1 1 1 0 1 0 58
0 0 1 1 1 0 1 1 59
0 0 1 1 1 1 0 0 60
0 0 1 1 1 1 0 1 61
0 0 1 1 1 1 1 0 62

© 2004 Mr.Mouse and WATTO

53

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

0 0 1 1 1 1 1 1 63
0 1 0 0 0 0 0 0 64
0 1 0 0 0 0 0 1 65
0 1 0 0 0 0 1 0 66
0 1 0 0 0 0 1 1 67
0 1 0 0 0 1 0 0 68
0 1 0 0 0 1 0 1 69
0 1 0 0 0 1 1 0 70
0 1 0 0 0 1 1 1 71
0 1 0 0 1 0 0 0 72
0 1 0 0 1 0 0 1 73
0 1 0 0 1 0 1 0 74
0 1 0 0 1 0 1 1 75
0 1 0 0 1 1 0 0 76
0 1 0 0 1 1 0 1 77
0 1 0 0 1 1 1 0 78
0 1 0 0 1 1 1 1 79
0 1 0 1 0 0 0 0 80
0 1 0 1 0 0 0 1 81
0 1 0 1 0 0 1 0 82
0 1 0 1 0 0 1 1 83
0 1 0 1 0 1 0 0 84
0 1 0 1 0 1 0 1 85
0 1 0 1 0 1 1 0 86
0 1 0 1 0 1 1 1 87
0 1 0 1 1 0 0 0 88
0 1 0 1 1 0 0 1 89
0 1 0 1 1 0 1 0 90
0 1 0 1 1 0 1 1 91
0 1 0 1 1 1 0 0 92
0 1 0 1 1 1 0 1 93
0 1 0 1 1 1 1 0 94
0 1 0 1 1 1 1 1 95
0 1 1 0 0 0 0 0 96
0 1 1 0 0 0 0 1 97
0 1 1 0 0 0 1 0 98
0 1 1 0 0 0 1 1 99
0 1 1 0 0 1 0 0 100
0 1 1 0 0 1 0 1 101
0 1 1 0 0 1 1 0 102
0 1 1 0 0 1 1 1 103
0 1 1 0 1 0 0 0 104
0 1 1 0 1 0 0 1 105
0 1 1 0 1 0 1 0 106
0 1 1 0 1 0 1 1 107
0 1 1 0 1 1 0 0 108
0 1 1 0 1 1 0 1 109
0 1 1 0 1 1 1 0 110
0 1 1 0 1 1 1 1 111
0 1 1 1 0 0 0 0 112
0 1 1 1 0 0 0 1 113
0 1 1 1 0 0 1 0 114
0 1 1 1 0 0 1 1 115
0 1 1 1 0 1 0 0 116
0 1 1 1 0 1 0 1 117
0 1 1 1 0 1 1 0 118
0 1 1 1 0 1 1 1 119
0 1 1 1 1 0 0 0 120
0 1 1 1 1 0 0 1 121
0 1 1 1 1 0 1 0 122
0 1 1 1 1 0 1 1 123
0 1 1 1 1 1 0 0 124
0 1 1 1 1 1 0 1 125
0 1 1 1 1 1 1 0 126
0 1 1 1 1 1 1 1 127
1 0 0 0 0 0 0 0 128
1 0 0 0 0 0 0 1 129
1 0 0 0 0 0 1 0 130
1 0 0 0 0 0 1 1 131
1 0 0 0 0 1 0 0 132
1 0 0 0 0 1 0 1 133

© 2004 Mr.Mouse and WATTO

54

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

1 0 0 0 0 1 1 0 134
1 0 0 0 0 1 1 1 135
1 0 0 0 1 0 0 0 136
1 0 0 0 1 0 0 1 137
1 0 0 0 1 0 1 0 138
1 0 0 0 1 0 1 1 139
1 0 0 0 1 1 0 0 140
1 0 0 0 1 1 0 1 141
1 0 0 0 1 1 1 0 142
1 0 0 0 1 1 1 1 143
1 0 0 1 0 0 0 0 144
1 0 0 1 0 0 0 1 145
1 0 0 1 0 0 1 0 146
1 0 0 1 0 0 1 1 147
1 0 0 1 0 1 0 0 148
1 0 0 1 0 1 0 1 149
1 0 0 1 0 1 1 0 150
1 0 0 1 0 1 1 1 151
1 0 0 1 1 0 0 0 152
1 0 0 1 1 0 0 1 153
1 0 0 1 1 0 1 0 154
1 0 0 1 1 0 1 1 155
1 0 0 1 1 1 0 0 156
1 0 0 1 1 1 0 1 157
1 0 0 1 1 1 1 0 158
1 0 0 1 1 1 1 1 159
1 0 1 0 0 0 0 0 160
1 0 1 0 0 0 0 1 161
1 0 1 0 0 0 1 0 162
1 0 1 0 0 0 1 1 163
1 0 1 0 0 1 0 0 164
1 0 1 0 0 1 0 1 165
1 0 1 0 0 1 1 0 166
1 0 1 0 0 1 1 1 167
1 0 1 0 1 0 0 0 168
1 0 1 0 1 0 0 1 169
1 0 1 0 1 0 1 0 170
1 0 1 0 1 0 1 1 171
1 0 1 0 1 1 0 0 172
1 0 1 0 1 1 0 1 173
1 0 1 0 1 1 1 0 174
1 0 1 0 1 1 1 1 175
1 0 1 1 0 0 0 0 176
1 0 1 1 0 0 0 1 177
1 0 1 1 0 0 1 0 178
1 0 1 1 0 0 1 1 179
1 0 1 1 0 1 0 0 180
1 0 1 1 0 1 0 1 181
1 0 1 1 0 1 1 0 182
1 0 1 1 0 1 1 1 183
1 0 1 1 1 0 0 0 184
1 0 1 1 1 0 0 1 185
1 0 1 1 1 0 1 0 186
1 0 1 1 1 0 1 1 187
1 0 1 1 1 1 0 0 188
1 0 1 1 1 1 0 1 189
1 0 1 1 1 1 1 0 190
1 0 1 1 1 1 1 1 191
1 1 0 0 0 0 0 0 192
1 1 0 0 0 0 0 1 193
1 1 0 0 0 0 1 0 194
1 1 0 0 0 0 1 1 195
1 1 0 0 0 1 0 0 196
1 1 0 0 0 1 0 1 197
1 1 0 0 0 1 1 0 198
1 1 0 0 0 1 1 1 199
1 1 0 0 1 0 0 0 200
1 1 0 0 1 0 0 1 201
1 1 0 0 1 0 1 0 202
1 1 0 0 1 0 1 1 203
1 1 0 0 1 1 0 0 204

© 2004 Mr.Mouse and WATTO

55

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

1 1 0 0 1 1 0 1 205
1 1 0 0 1 1 1 0 206
1 1 0 0 1 1 1 1 207
1 1 0 1 0 0 0 0 208
1 1 0 1 0 0 0 1 209
1 1 0 1 0 0 1 0 210
1 1 0 1 0 0 1 1 211
1 1 0 1 0 1 0 0 212
1 1 0 1 0 1 0 1 213
1 1 0 1 0 1 1 0 214
1 1 0 1 0 1 1 1 215
1 1 0 1 1 0 0 0 216
1 1 0 1 1 0 0 1 217
1 1 0 1 1 0 1 0 218
1 1 0 1 1 0 1 1 219
1 1 0 1 1 1 0 0 220
1 1 0 1 1 1 0 1 221
1 1 0 1 1 1 1 0 222
1 1 0 1 1 1 1 1 223
1 1 1 0 0 0 0 0 224
1 1 1 0 0 0 0 1 225
1 1 1 0 0 0 1 0 226
1 1 1 0 0 0 1 1 227
1 1 1 0 0 1 0 0 228
1 1 1 0 0 1 0 1 229
1 1 1 0 0 1 1 0 230
1 1 1 0 0 1 1 1 231
1 1 1 0 1 0 0 0 232
1 1 1 0 1 0 0 1 233
1 1 1 0 1 0 1 0 234
1 1 1 0 1 0 1 1 235
1 1 1 0 1 1 0 0 236
1 1 1 0 1 1 0 1 237
1 1 1 0 1 1 1 0 238
1 1 1 0 1 1 1 1 239
1 1 1 1 0 0 0 0 240
1 1 1 1 0 0 0 1 241
1 1 1 1 0 0 1 0 242
1 1 1 1 0 0 1 1 243
1 1 1 1 0 1 0 0 244
1 1 1 1 0 1 0 1 245
1 1 1 1 0 1 1 0 246
1 1 1 1 0 1 1 1 247
1 1 1 1 1 0 0 0 248
1 1 1 1 1 0 0 1 249
1 1 1 1 1 0 1 0 250
1 1 1 1 1 0 1 1 251
1 1 1 1 1 1 0 0 252
1 1 1 1 1 1 0 1 253
1 1 1 1 1 1 1 0 254
1 1 1 1 1 1 1 1 255

© 2004 Mr.Mouse and WATTO

56

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

B. American Standard Code for Information Interchange
(ASCII) Table

1. Standard

© 2004 Mr.Mouse and WATTO

57

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

2. Extended

Tables by Alain Courteau, Drummondville, Canada

© 2004 Mr.Mouse and WATTO

58

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

C. Format of some common Game Archives

Halo *.MAP

General outline

Position(Bytes) Type Description
0 - 3 Long Version: This format only applies to versions 1 and 2.
4 - 7 Long TailPointer_Filenames: The pointer to the Filenames Tail

(an array of null-terminated strings)
8 - 11 Long TailPointer_Fileinformation: The pointer to the

FileInformation Tail (each entry for a file is total 12 bytes in
length)

12 - 15 Long Archive_ItemCount: The number of items or files stored
in the archive

16 - TailPointer_Filenames Data Resources: The files in the archive
TailPointer_Filenames -
TailPointer_Fileinformation

Array of Filenames Tail The names of the files in the archive

TailPointer_Fileinformation - EOF Array of FileInformation Tail The directory of files

Filenames Tail (Archive_ItemCount)

Position(Bytes) Type Description
0 - NULL null-terminated string Item_Filename: The name of the file

FileInformation Tail (Archive_ItemCount)

Position(Bytes) Type Description

0 - 3 Long Pointer_Filename: A relative pointer to the start of the null-terminated filename
for this file. This is relative to the TailPointer_Filenames offset

4 - 7 Long Item_Size: The size of the file
8 - 11 Long Item_Offset: The offset to the file

Remarks:
Note that not all *.map files use this format. This is because Halo uses *.map
files for 2 purposes: archives, and actual maps. Therefore it is essential that
you check the version field equals either 1 or 2.

© 2004 Mr.Mouse and WATTO

59

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

Lock On, Midtown Madness 3 *.CDDS

General outline

Position(Bytes) Type Description
0 - DDSInfo_Offset Header Header: The header of the archive
DDSInfo_Offset - DDSMIPInfo_Offset DDSInfo DDSInfo: Information on the DDS
DDSMIPInfo_Offset - DDSDataObjects_Offset DDSMipInfo DDSMipInfo: Information on DDS mipmaps
DDSDataObjects_Offset - EOF DDSDataObjects DDSDataObjects: The actual DDS data.

Header

Position(Bytes) Type Description
0 - 3 Long Unknown: Has the value 12
4 - 7 Long Archive_ItemCount: The number of mipmaps in the archive
8 - 11 Long Unknown: Has the value 16.
12 - 15 Long Unknown: But is .CDDS file dependent.
16 - 19 Long Unknown: Has the value 0.
20 - 23 Long Unknown: Has the value 0.

DDSInfo (Archive_ItemCount)

Position(Bytes) Type Description
0 - 31 String Item_Name: The name of the picture
32 - 35 Long Item_Heigth: The height of the original picture, in pixels
36 - 39 Long Item_Width: The width of the original picture, in pixels
40 - 43 String Item_DDSFormat: An identification string for the type of compression

44 - 47 Long

Item_HighsizeCount: I haven't quite figured out the logic of this yet, but this is the number of MIPs
in the current collection that are greater than 2048 bytes in size. These also start at a different
offset. Generally, the small files are collected at the front of the file, and those larger than 2048
come after the smaller files. Possible something to do with speed of the game, loading of the bigger
ones in memory for quick display, while the smaller ones may be read from the file?

48 - 51 Long Unknown: Has the value 0
52 - 55 Long Unknown: Has the value 0
56 - 59 Long Unknown: Has the value 1
60 - 63 Long Item_MIPCount: The number of DDS file data chunks in the current collection

64 - 67 Long Item_MIPInfoOffset: The relative offset of the DDSMipInfo entry for the current collection. The
offset is relative from this position in the archive.

DDSMipInfo (Archive_ItemCount, Item_MIPCount)

Position(Bytes) Type Description
0 - 3 Long MIP_RelativeOffset: The relative offset to the current MIP data chunk
4 - 7 Long MIP_Size: The size of the MIP in bytes (the same as MIP_Width * MIP_Height)
8 - 11 Long MIP_Heigth: The height of the current MIP (in pixels)
12 - 15 Long MIP_Width: The width of the current MIP (in pixels)

© 2004 Mr.Mouse and WATTO

60

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

Remarks:

Note again that the MIPs that are in the CDDS are DDS files, without the 128-
bytes DDS-header. To be able to view them you need to insert the header
before the MIP and save it as a new DDS file. Some knowledge of the DDS
header structure is needed, but can be looked up on the internet. One way to
do it is to rip a header from an existing DDS file (saved in the same surface
format, e.g. "DXT5") and insert that before the MIP each time you wish to
save. Make sure you change the height and width variables in the DDS-
header (located at byte 13 and 17 respectively) to their corresponding MIP
values before you save the file.

Note that the collection of MIPs for each texture start with the MIP in the
original dimensions, for example 256 x 64 and decrease in size by half for
each subsequent MIP. Thus, you will find that the order of the MIPs in the
example will be 256x64, 128x32, 64x16, 32x8, 16x4, 8x2, 4x1, 2x1, 1x1. So
the number of MIPs present in each collection is determined by the point
where the dimensions of the texture are 1x1. The size of the MIP naturally
becomes 4 times smaller each time, until the size of 16 is reached. So,
although 4x1 = 4, the size will still be 16 bytes.

© 2004 Mr.Mouse and WATTO

61

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

Sacrifice *.WAD

General outline

Position(Bytes) Type Description
0 - 3 String Header: Identification of this archive format. Has the value "WAD>"
4 - 7 Long TailPointer: Pointer to Tail
8 - 11 Long TailSize: Uncompressed size of the tail, in bytes
12 - 19 Unknown Unknown: Unknown meaning
20 - Tail Data Resources: The data of each file

Tail - EOF Tail
(compressed)

The directory. Note that it is Zlib compressed, so you will need to decompress the directory
before reading it.

Tail

Position(Bytes) Type Description
0 - 3 String Filename: The name of the file. This string is reversed
4 - 7 String FileType: The type of the file. This string is reversed
8 - 11 Long FolderSize: Total size of all items in this folder
12 - 15 Long FolderSize: Total size of all items in this folder
16 - 19 Long NumberOfFiles: The number of items in this folder

20 - 23 Long FolderDivergance: Has a value of either 0 or 1. The value 1 indicates the start of a new folder.
The value 0 indicates a file in the current folder.

24 - 27 Unknown Unknown: Unknown meaning

Remarks:
Note that there is no entry in the tail that represents the offset of each file in
the archive. You will have to take the position after the "unknown" long in the
header (the first bytes) as the offset of the first file in the list. Subsequent
offsets of next files can then be calculated by adding the size of the previous
file to the offset of the previous file.

Note that the name of the items is always reversed (for some obscure reason)
and that the first 4 bytes in the name are actually a string representing the
type of the item (e.g. WAD!, FLDR, TEXT, SAMP), and the second 4 bytes
are the name of the item. Note that SAMP files (e.g. in sounds.wad) are
actually RIFF (*. WAV) files, preceded with their own 32 bytes header.

© 2004 Mr.Mouse and WATTO

62

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

D: Useful References

• XeNTaX (http://www.xentax.com)

The website of co-author Mike Zuurman, and home to MultiEx Commander.
MultiEx commander is a Windows-based program that can open and
manipulate many hundreds of game archives, through use of its own
specialist scripting language.

• WATTO Studios (http://www.watto.org)

The website of co-author WATTO, and home to Game Extractor. Game
Extractor is a game archive viewer/editor that can be run on any platform, and
supports a host of different game formats.

• Wotsit (http://www.wotsit.org)

A huge collection of file format specifications. The specifications are often
taken from the company developing or maintaining the format, so the material
is reliable. Contains specifications for all types of files including sounds,
images, text, archives, and executables.

© 2004 Mr.Mouse and WATTO

63

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

E: Common File Format Tags

Tag Extension Type Description
BM *.bmp *.dib Image Microsoft-standard Bitmap image

(http://www.microsoft.com)
CWS *.swf Animation Macromedia Flash animation (Compressed)

(http://www.macromedia.com/flash)
FWS *.swf Animation Macromedia Flash animation (Uncompressed)

(http://www.macromedia.com/flash)
GIF *.gif Image GIF image

(writing GIF images requires a license from CompuServe)
MSCF *.cab Archive Microsoft Cabinet archive

(http://www.microsoft.com)
MZ *.exe *.dll Executable Windows executable program application

(http://www.microsoft.com)
%PDF *.pdf Document Standard Adobe PDF document / e-book

(http://www.adobe.com)
PK *.zip *.gz Archive Standard ZIP/GZip archive

(http://www.pkzip.com)
Rar! *.rar Archive RAR Archive

(http://www.rarsoft.com)
RIFF *.wav Audio Microsoft-standard audio file

(http://www.microsoft.com)

© 2004 Mr.Mouse and WATTO

64

THE DEFINITIVE GUIDE TO EXPLORING FILE FORMATS

10. Legal Information

This guide aims to help programmers gain an understanding and appreciation
of the various file formats in use today. Using this knowledge will help
programmers develop their own formats, and increase support for different file
formats in their own programs.

This guide supports the exploration of file formats that are open-source or
standards. We encourage the exploration of any file, so long as the
exploration is for your own benefit only, and will not be used or distributed in
an attempt to do anything illegal, including hacking of files, bypassing legal or
copyright measures introduced into a file, or for use against a company or
individual. If your exploration is for your own benefit and use, we fully support
you – there is nothing illegal about exploring the files on your own computer in
your own access. If you do wish to use the information you have gained
through exploration, make sure you check for any licensing issues,
trademarks, or copyrights that may be associated with the format – otherwise
you could end up with major fines and criminal charges.

This guide, and the authors, do not encourage or support the exploration of
copyright or otherwise protected material for any purpose. The reading of this
material does not grant you permission to modify or distribute information
contained in any file that is not of your own creation.

This guide, and the authors, do not support and are not affiliated with any
game, program, company, copyright, or trademark that is used within. All
copyrights, trademarks, and similar rights are used for identification purposes
only. All rights reserved.

© 2004 Mr.Mouse and WATTO

65

	Table of Contents
	Introduction
	What is a GRA?
	What is a GRAF?

	Tools
	Hex Editors
	Hex Workshop

	Terms, Definitions, and Data Structures
	Files
	Bits
	Bytes
	16-bit (2-byte) numbers
	Working from left to right, we get the value…
	1x215+0x214+1x213+1x212+1x211+1x210+0x29+…+0x21+0x20

	32-bit (4-byte) numbers
	64-bit (8-byte) numbers
	Strings
	Hexadecimal Numbering
	Signed and Unsigned Numbers
	Big-Endian and Little-Endian
	This is an example of Little-Endian ordering. However, in Bi

	File Offsets

	Archive Patterns
	Directory Archives
	Tree Archives
	Directory Entry 2

	Chunked Archives
	Split Chunk Archives
	External Directory Archives

	Checking Your Results
	Common Types of Fields
	Validating Your Fields
	Padding
	Filename Patterns

	Encryption and Compression
	7.1 The basics
	AND
	OR
	The OR operation sets a bit to 0 only if both operators are
	0 OR 0 = 0
	1 OR 0 = 1
	0 OR 1 = 1
	1 OR 1 = 1

	XOR
	NOT
	SHL
	SHR
	7. 2 Encryption
	Painkiller Encryption
	7. 3 Compression

	Worked Examples
	Quake *.PAK
	Examine the end of the file for filename strings
	Offset
	Type
	Description
	Tail pointer
	Tail size
	N Blocks of 64 bytes
	Relative offset
	Type
	Description
	Resource filename
	Resource offset
	Resource size

	Appendix
	A: Binary (Byte Number Table
	B. American Standard Code for Information Interchange (ASCII
	C. Format of some common Game Archives
	Remarks:

	D: Useful References
	E: Common File Format Tags

	Legal Information

