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              I Introduction

Overview

The Hierarchical Data Format (HDF) was designed to be an easy,
straight-forward, and self-describing means of sharing scientific data
among people, projects, and types of computers. An extensible header
and carefully crafted internal layers provide a system that can grow as
scientific data-handling needs evolve.

This document, the NCSA HDF Specification and Developer’s Guide,
fully defines HDF and its interfaces, discusses criteria employed in its
development, and provides guidelines for developers working on HDF
itself or building applications that employ HDF.

This introduction provides a brief overview of HDF capabilities and
design.

Why HDF?
A fundamental requirement of scientific data management is the ability
to access as much information in as many ways, as quickly and easily
as possible. A data storage and retrieval system that facilitates these
capabilities must provide the following features:

Support for scientific data and metadata
Scientific data is characterized by a variety of data types and
representations, data sets (including images) that can be extremely
large and complex, and the need to attach accompanying attributes,
parameters, notebooks, and other metadata.  Metadata,
supplementary data that describes the basic data, includes
information such as the dimensions of an array, the number type of
the elements of a record, or a color lookup table (LUT).

Support for a range of hardware platforms
Data can originate on one machine only to be used later on many
different machines. Scientists must be able to access data and
metadata on as many hardware platforms as possible

Support for a range of software tools
Scientists need a variety of software tools and utilities for easily
searching, analyzing, archiving, and transporting the data and
metadata. These tools range from a library of routines for reading
and writing data and metadata, to small utilities that simply display
an image on a console, to full-blown database retrieval systems that
provide multiple views of thousands of sets of data and metadata.
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Rapid data transfer
Both the size and the dispersion of scientific data sets require that
mechanisms exist to get the data from place to place rapidly.

Extendibility
As new types of information are generated and new kinds of science
are done, a means must be provided to support them.

What is HDF?

The HDF Structure HDF is a self-describing extensible file format using tagged objects that
have standard meanings. The idea is to store both a known format
description and the data in the same file. HDF tags describe the format
of the data because each tag is assigned a specific meaning: the tag
DFTAG_LUT stands for color palette, the tag DFTAG_RI stands for 8bit
raster image, and so on (see Figure 1). A program that has been written
to understand a certain set of tag types can scan the file for those tags
and process the data. This program also can ignore any data that is
beyond its scope.

Figure I.1 Raster Image Set in an HDF File . The set has three data objects with different tags representing three
different types of data. The palette and dimension objects contain metadata.

400 x 600dimensions

raster image

palette

The set of available data objects encompasses both primary data and
metadata. Most HDF objects are machine- and medium-independent,
physical representations of data and metadata.

HDF Tags The HDF design assumes that we cannot know a priori what types of
data objects will be needed in the future, nor can we know how
scientists will want to view that data. As science progresses, people
will discover new types of information and new relationships among
existing data.  New types of data objects new tags will be created to
meet these expanding needs. To avoid unnecessary proliferation of tags
and to ensure that all tags are available to potential users who need to
share data, a portable public domain library is available that interprets
all public tags. The library contains user interfaces designed to provide
views of the data that are most natural for users. As we learn more
about the way scientists need to view their data, we can add user
interfaces that reflect data models consistent with those views.
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Types of Data and
Structures

HDF currently supports the most common types of data and metadata
that scientists use, including multidimensional gridded data, 2-
dimensional raster images, polygonal mesh data, multivariate data sets,
finite-element data, non-Cartesian coordinate data, and text.

In the future there will almost certainly be a need to incorporate new
types of data, such as voice and video, some of which might actually be
stored on other media than the central file itself. Under such
circumstances, it may become desirable to employ the concept of a
virtual file.  A virtual file functions like a regular file but does not fit
our normal notion of a monolithic sequence of bits stored entirely on a
single disk or tape.

HDF also makes it possible for the user to include annotations, titles,
and specific descriptions of the data in the file.  Thus, files can be
archived with human-readable information about the data and its origins

One collection of HDF tags supports a hierarchical grouping structure
called Vset  that allows scientists to organize data objects within HDF
files to fit their views of how the objects go together, much as a person
in an office or laboratory organizes information in folders, drawers,
journal boxes, and on their desktops.

Backward and Forward
Compatibility

An important goal of HDF is to maximize backward and forward
compatibility among its interfaces. This is not always achievable,
because data formats must sometimes change to enhance performance,
to correct errors, or for other reasons. However, whenever possible,
HDF files should not become out of date. For example, suppose a site
falls far behind in the HDF standard so its users can only work with the
portions of the specification that are three years old. Users at this site
might produce files with their old HDF software then read them with
newer software designed to work with more advanced data files. The
newer software should still be able to read the old files.

Conversely, if the site receives files that contain objects that its HDF
software does not understand, it should still be able to list the types of
data in the file.  It should also be able to access all of the older types of
data objects that it understands, despite the fact that the older types of
data objects are mixed in with new kinds of data. In addition, if the
more advanced site uses the text annotation facilities of HDF
effectively, the files will arrive with complete human-readable
descriptions of how to decipher the new tag types.

Calling Interfaces To present a convenient user interface made up of something more
usable than a list of tag types with their associated data requirements,
HDF supports multiple calling interfaces.

The low level calling interfaces are used to manipulate tags and raw
data, for error handling, and to control the physical storage of data.
These interfaces are designed to be used by developers who are providing
the higher level interfaces for applications like raster image storage or
scientific data archiving.

The application interfaces, at the next level, include several modules
specifically designed to simplify the process of storing and accessing
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specific types of data.  For example, the palette interface is designed to
handle color palettes and lookup tables while the scientific data interface
is designed to handle arrays of scientific data.  If you are primarily
interested in reading or writing data to HDF files, you will spend most
of your time working with the application interfaces.

The HDF utilities  and NCSA applications, at the top level, are special
purpose programs designed to handle specific tasks or solve specific
problems.  The utilities provide a command line interface for data
management.  The applications provide solutions for problems in
specific application areas and often include a graphic user interface.
Several third party applications are also available at this level.

Machine Independence An important issue in data file design is that of machine independence
or transportability. The HDF design defines standard representations for
storing all data types that it supports. When data is written to a file, it
is typically written in the standard HDF representation. The conversion
is handled by the HDF software and need not concern the user. Users
may override this convention and install their own conversion routines,
or they may write data to a file in the native format of the machine on
which it was generated.

Some History

In 1987 a group of users and software developers at NCSA searched for
a file format that would satisfy NCSA’s data needs. There were some
interesting candidates, but none that were in the public domain, were
targeted to scientific data, and yet were sufficiently general and
extensible. In the course of several months, borrowing concepts from
several existing formats, the group designed HDF.

The first version of HDF was implemented in the spring and summer of
1988. It included a general purpose interface and an 8-bit raster image
interface. In the fall of 1988, a scientific data set interface was designed
and implemented, enabling HDF users to store multidimensional arrays
and related data. Soon thereafter interfaces were implemented for storing
color palettes, 24-bit raster images, and annotations.

In 1989, it became clear that there was a need to support a general
grouping structure and unstructured data such as that used to represent
polyhedra in graphical applications. This led to Vsets, whose interface
routines were implemented as a separate HDF library.

Also in 1989 it became clear that the existing general purpose layer was
not sufficiently powerful to meet anticipated future needs and that the
coding could use a substantial overhaul. From this, the long process of
redesigning the lower layers of HDF began. The first version
incorporating extended tags and the new lower layers of HDF was
released in the summer of 1992 as HDF Version 3.2.

This release, HDF Version 3.3, provides alternative physical storage
methods (external and linked block data elements) through extended
tags, JPEG data compression, changes to some Vset interface functions,
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access to netCDF files through a complete netCDF interface,1

hyperslab access routines for old-style SDS objects, and various
performance improvements.

About This Document

This document is designed for software developers who are designing
applications or routines for use with HDF files and for users who need
detailed information about HDF. Users who are interested in using HDF
to store or manipulate their data will not normally need the kind of
detail presented in this manual. They should instead consult one of the
user-level documents:

Versions 3.2 and earlier
NCSA HDF Calling Interfaces and Utilities
NCSA HDF Vset

Version 3.3
Getting Started with NCSA HDF
NCSA HDF User’s Guide
NCSA HDF Reference Manual

Someone using third-party software that uses HDF may also have to
consult a manual for that software.

Document Contents The NCSA HDF Specification and Developer’s Guide contains the
following chapters and appendix:

Chapter 1:  Basic Structure of HDF Files
Introduces and describes the components and organization of HDF
files

Chapter 2:  Software Overview
Describes the organization of the software layers that make up the
basic HDF library and provides guidelines for writing HDF
software

Chapter 3:  General Purpose Interface
Describes the low level HDF routines that make up the general
purpose interface

Chapter 4:  Sets and Groups
Explains the roles of sets and groups in an HDF file, and describes
raster image sets, scientific data sets, and Vsets

Chapter 5:  Annotations
Explains the use of annotations in HDF files

Chapter 6:  Tag Specifications
Describes the tag identification space, the extended tag structure,
and all of the NCSA-supported tags

Chapter 7:  Portability Issues
Describes the measures taken to maximize HDF portability across
platforms and to ensure that HDF routines are available to both C
and FORTRAN programs

1 NetCDF is a network-transparent derivative of the original CDF (Common Data Format) developed by the
National Aeronautics and Space Administration (NASA).  It is used widely in atmospheric sciences and
other disciplines requiring very large data structures.  NetCDF is in the public domain and was
developed at the Unidata Program Center in Boulder, Colorado.
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Appendix A:  Tags and Extended Tag Labels
Presents a list of NCSA-supported HDF tags and a list of labels
used with extended tags

Conventions Used in This Document

Most of the descriptive text in this guide is printed in 10 point New
Century Schoolbook.  Other typefaces have specific meanings that will
help the reader understand the functionality being described.

New concepts are sometimes presented in italics on their first
occurrence to indicate that they are defined within the paragraph.

Cross references within the specification include the title of the
referenced section or chapter enclosed in quotation marks.  (E.g., See
Chapter 1, "The Basic Structure of HDF Files," for a description of the
basic HDF file structure.)

References to documents italicize the title of the document.  (E.g., See
the guide Getting Started with NCSA HDF  to familiarize yourself with
the basic principles of using HDF.)

Literal expressions and variables often appear in the discussion.  Literal
expressions are presented in Courier while variables are presented in
italic Courier.  A literal expression is any expression that would be
entered exactly as presented, e.g., commands, command options, literal
strings, and data.  A variable is an expression that serves as a place
holder for some other text that would be entered.  Consider the
expression cp file1 file2.  cp is a command name and would be
entered exactly as it appears, so it is printed in bold Courier.  But
file1 and file2 are variables, place holders for the names of real
files, so they are printed in italic bold Courier; the user would enter the
actual filenames.

This guide frequently offers sample command lines.  Sometimes these
are examples of what might be done; other times they are specific
instructions to the user.   Command lines may appear within running
text, as in the preceding paragraph, or on a separate line, as follows:

cp file1 file2

Command lines always include one or more literal expressions and may
include one or more variables, so they are printed in Courier and italic
Courier as described above.

Keys that are labeled with more than one character, such as the
RETURN key, are identified with all uppercase letters. Keys that are to
be pressed simultaneously or in succession are linked with a hyphen.
For example, “press CONTROL-A” means to press the CONTROL key
then, without releasing the CONTROL key, press the A key.
Similarly, “press CONTROL-SHIFT-A “ means to press the
CONTROL and SHIFT keys then, without releasing either of those,
press the A key.

Table I.1 summarizes the use of typefaces in the technical discussion
(i.e., everything except references and cross references).



NCSA HDF Specification and Developer’s Guide

xii National Center for Supercomputing Applications

Table I.1 Meaning of entry format notations

T y p e Appearance Example Entry Method

Literal expression
(commands, literal
strings, data)

Courier dothis Enter the expression exactly as it
appears.

Variables Italic Courier filename Enter the name of the file or the
specific data that this expression
represents.

Special keys Uppercase RETURN Press the key indicated.

Key combinations Uppercase with
hyphens between key
names

CONTROL-A While holding down the first one or
two keys, press the last key.

Program listings and screen listings are presented in a boxed display in
Courier type such as in Figure I.2, “Sample Screen Listing.”  When the
listing is intended as a sample that the reader will use for an exercise or
model, variables that the reader will change are printed in italic Courier.

Figure I.2 Sample screen listing

mars_53% ls -F
MinMaxer/                    net.source
mars_54% cd MinMaxer
mars_55% ls -F
list.MinMaxer                minmaxer.v1.04/
mars_56% cd minmaxer.v1.04
mars_57% ls -F
COPYRIGHT                    minmaxer.bin/               source.minmaxer/
README                       sample/                     source.triangulation/
mars_58%
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Chapter 1 Basic Structure of HDF Files

Chapter Overview

This chapter introduces and describes the components and organization
of Hierarchical Data Format (HDF) files.

File Header

The first component of an HDF file is the file header (FH), which takes
up the first four bytes in an HDF file. The file header is a signature that
indicates that the file is an HDF file. Specifically, it is a 32-bit magic
number with the hexadecimal value 0e031301.

Note:  To ensure portability,
the programmer must ensure
that the hexadecimal value in
an HDF file header is written in
big-endian order.

HDF assumes big-endian order in reading and writing files. The order of
bytes in the file header might be swapped on some machines when the
HDF file header is written, causing these characters to be written in
little-endian order. To maintain HDF file portability when developing
software for such machines, you must make sure the characters are read
and written in the exact order shown.

Data Objects

The basic building block of an HDF file is the data object, which
contains both data and information about the data. A data object has two
parts: a 12-byte data descriptor (DD) and a data element. Figure 1.1
illustrates two data objects.

Figure 1.1 Two Data Objects

Rank and dimensions

Data 63.2,  54.5,  12.3, . . .
18.2, 103.6,  -7.4, . . .
 :      :      :
12.1,   6.9,  83.6, . . .

2; 90 by 100

Data Descriptors Data Elements

As the names imply, the data descriptor provides information about the
data; the data element is the data itself. In other words, all data in an
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HDF file has information about itself attached to it. In this sense, HDF
files are self-describing files.

Data Descriptor (DD) A data descriptor (DD) has four fields: a 16-bit tag, a 16-bit reference
number, a 32-bit data offset, and a 32-bit data length. These are depicted
in Figure 1.2 and are briefly described in Table 1.1. Explanations of
each part appear in the paragraphs following Table 1.1.

Figure 1.2 A Data Descriptor (DD)

Tag Reference 
number

Offset Length

Tag/ref 
(data identifier)

16 bits 16 bits 32 bits32 bits

Table 1.1 Parts of a Data Descriptor

Part Description

Tag/ref Unique identifier for each data element

(data identifier) Tag Type of data in a data element

Reference
number

Number distinguishing data element from
others with the same tag

Offset Byte offset of data element from beginning of file

Length Length of data element

Tag/ref  (Data Identifier)
Note:  Only the full tag/ref
uniquely identifies a data
element.

A tag and its associated reference number (abbreviated as tag/ref)
uniquely identify a data element in an HDF file. The tag/ref
combination is also known as a data identifier.

Tag
A tag is the part of a data descriptor that tells what kind of data is
contained in the corresponding data element. A tag is actually a 16-bit
unsigned integer between 1 and 65535, but every tag is also given a
name that programs can refer to instead of the number. If a DD has no
corresponding data element, its tag is DFTAG_NULL, indicating that no
data is present. A tag may never be zero.

Tags are assigned by NCSA as part of the specification of HDF. The
following ranges are to be used to guide tag assignment:

00001 – 32767 reserved for NCSA use
32768 – 64999 user-definable
65000 – 65535 reserved for expansion of the format

Chapter 6, “Tag Specifications,” provides full specifications for all
currently supported HDF tags. Appendix A, “Tags and Extended Tag
Labels,” lists the current tag assignments. See the section “Some HDF
Conventions” in Chapter 2, “Software Overview,” for more information
on allocating tags.
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Reference Number
Tags are not necessarily unique in an HDF file; there may be more than
one data element of a given type.  Therefore, each tag is associated with
a unique reference number  in the data descriptor.

Reference numbers are not necessarily assigned consecutively, so you
cannot assume that the actual value of a reference number has any
meaning beyond providing a way of distinguishing among elements
with the same tag.  Furthermore, reference numbers are only unique for
data elements with the same tag; two 8-bit raster images will never
have the same reference number but an 8-bit raster image and a 24-bit
raster image might.

Reference numbers are 16-bit unsigned integers.

Data Offset and Length
Note:  All offsets are from the
beginning of the file; they are
not relative.

The data offset states the byte position of the corresponding data
element from the beginning of the file. The length states the number of
bytes occupied by the data element.

Offset and length are both 32-bit unsigned integers.

DD Blocks
Data descriptors are stored physically in a linked list of blocks called
data descriptor blocks or DD blocks. The individual components of a
DD block are depicted in Figure 1.3. All of the DDs in a DD block are
assumed to contain significant data unless they have the tag
DFTAG_NULL (no data).

In addition to its DDs, each data descriptor block has a data descriptor
header (DDH). The DDH has two fields: a block size field and a next
block field. The block size field is a 16-bit unsigned integer that
indicates the number of DDs in the DD block. The next block field is a
32-bit unsigned integer giving the offset of the next DD block, if there
is one. The DDH of the last DD block in the list contains a 0 in its
next block field.

Figure 1.3 Model of a Data Descriptor Block

Block
size

Next
block Tag Ref Offset Length

DD Block

DDH DD DD DD

Tag Ref Offset Length Tag Ref Offset Length ....

Since the default number of DDs in a DD block is defined when the
HDF library is compiled, changing the default requires recompilation.

Data Element
A data element is the raw data portion of a data object. Its data type can
be determined by examining its tag, but other interpretive information
may be required before it can be processed properly.
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Each data element is stored as a set of contiguous bytes starting at the
offset and with the length specified in the corresponding DD.1

Exceptions Note that the data object identified by the tag DFTAG_MT does not
adhere to the standards described above; it consists of the tag
immediately followed by four number types.  Since there can be only
one DFTAG_MT tag in an HDF file, there is no need for a reference
number.  Since all the data can be stored in the DD with the tag, there
is no need for a data element and the offset and length are unnecessary.

Several other tags, such as DFTAG_NULL and DFTAG_JPEG, serve as
binary flags and convey all the required information by the mere fact of
their presence in an HDF file.  These tags therefore point to no data
element and have offset and length values of 0.  Consider these
examples: DFTAG_NULL indicates a data object containing no data;
DFTAG_JPEG indicates that an associated data object, indicated by
another tag, contains a JPEG data image.  The descriptions of these tags
include a sink pointer ( )in the diagrams in Chapter 6.

See the related entries in Chapter 6, “Tag Specifications,” for a
complete descriptions of these tags.

Physical Organization of HDF Files

The file header, DD blocks, and data elements appear in the following
order in an HDF file:

• File header
• First DD block
• Data elements
• If necessary, more DD blocks, more data elements, etc.

These relationships are summarized in Table 1.2.

The only rule governing the distribution of DD blocks and data
elements within a file is that the first DD block must follow
immediately after the file header. After that, the pointers in the DD
headers connect the DD blocks in a linked list and the offsets in the
individual DDs connect the DDs to the data elements.

Table 1.2 Summary of the Relationships among Parts of an HDF File

Part Constituents

HDF file FH, DD block, data, DD block, data, DD block, data...

FH 0x0e031301  [32-bit HDF magic number]

DD block DDH, DD, DD, DD, ...

DDH Number of DDs [16 bits], offset to next DD block [32 bits]

DD Tag [16 bits], ref [16 bits], offset [32 bits], length [32 bits]

Data Data element, data element, data element ...

FH = file header,   DD = data descriptor,   DDH = DD  header

1 Some HDF software provides the capability of storing objects as a series of linked blocks or external
elements, but this occurs at a higher level.  At the lowest level each object with a tag/ref is stored
contiguously.
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Sample HDF File

We are now ready to examine a sample file. Consider an HDF file that
contains two 400-by-600 8-bit raster images as described in Table 1.3.

Table 1.3 Sample Data Objects in an HDF File

Tag Ref Data

DFTAG_FID 1 File identifier: user-assigned title for file

DFTAG_FD 1 File descriptor: user-assigned block of text describing overall file contents

DFTAG_LUT 1 Image palette (768 bytes)

DFTAG_ID 1 x- and y-dimensions of the 2-dimensional arrays that contain the raster
images (4 bytes)

DFTAG_RI 1 First 2-dimensional array of raster image pixel data (x*y bytes)

DFTAG_RI 2 Second 2-dimensional array of pixel data (also x*y bytes)

Assuming that a DD block contains 10 DDs, the physical organization
of the file could be described by Figure 1.5.

In this instance, the file contains two raster images. The images have
the same dimensions and are to be used with the same palette, so the
same data objects for the palette (DFTAG_IP8) and dimension record
(DFTAG_ID8) can be used with both images.

Figure 1.5 Physical Representation of Data Objects

Section Item Offset Contents

Header FH 0 0e031301 (HDF magic number, in hexadecimal)

DD block DDH 4 10 0

DD 10 DFTAG_FID 1 130 4

DD 22 DFTAG_FD 1 134 41

DD 34 DFTAG_LUT 1 175 768

DD 46 DFTAG_ID 1 943 4

DD 58 DFTAG_RI 1 947 240000

DD 70 DFTAG_RI 2 240947 240000

DD 82 DFTAG_NULL (Empty)

DD 94 DFTAG_NULL (Empty)

DD 106 DFTAG_NULL (Empty)

DD 118 DFTAG_NULL (Empty)

Data Data 130 sw3

Data 134 solar wind simulation: third try. 8/8/88

Data 175 .... (Data for the image palette)

Data 943 400 600 (Image dimensions)

Data 947 .... (Data for the first raster image)

Data 240947 .... (Data for the second raster image)
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Chapter 2 Software Overview

Chapter Overview

This chapter describes the HDF software organization and provides
guidelines for writing HDF software.

HDF is an amalgam of code and functionality from many sources.  For
example, the netCDF code came from the Unidata Program Center, and
data compression and conversion software has been acquired from a
variety of third parties.  NCSA staff wrote the code for the basic HDF
functionality and perfomed all of the integration work.

This document contains specifications for the NCSA-developed code and
functionality.  It does not include specifications for code or
functionality from non-NCSA sources, though it does sometimes refer
to specifications provided by other sources.  Only the HDF interface to
such code is specified in this document.

HDF Software Layers
 
There are three basic levels of HDF software:
• The HDF low level interface
• The HDF application interfaces
• HDF applications and utilities

The lowest layer, the low level interface, includes general purpose
routines that form the basis of all higher-level HDF development.  The
low level routines directly execute functions such as file I/O, error
handling, memory management, and physical storage.

The application interfaces support higher level views of data and provide
the interfaces for building user-level applications.  Routines to handle
raster images, palettes, annotations, scientific data sets, Vdatas and
netCDF appear at this level.

The applications and utilities are implemented at the highest level.
NCSA utilities, NCSA applications, and third party applications are all
implemented at this level.

The utilities perform general functions, such as listing the contents of
an HDF file, and more specialized functions, such as converting data
from one HDF data type to another (e.g., raster images to scientific data
sets).  In general, the utilities have simple command line interfaces and
perform data management tasks.

The applications usually perform data analysis tasks and have polished
interactive user interfaces. They include the NCSA Visualization Tool
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Suite, commercial software packages that use HDF, and other packages
created at NCSA and by various third party projects.

Figure 2.1 illustrates this layered implementation.

Figure 2.1. HDF Software Layers 1

HDF Utilities NCSA Applications 3rd Party Applications

HDF Application Interfaces

HDF Low Level Interfaces

HDF File

The general purpose interfaces are described in detail in this document.
The application interfaces and command line utilities are described in
the document NCSA HDF Calling Interfaces and Utilities  for Versions
3.2 and earlier and in the NCSA HDF User’s Guide and NCSA HDF
Reference Manual for Version 3.3. Other HDF-based software tools
should have their own manuals.

Since the NCSA user community writes programs primarily in C and
FORTRAN, all of the HDF application interfaces developed at NCSA
are callable from both C and FORTRAN programs. Since the general
purpose interface is primarily for program development, not for
applications, it provides C-callable routines only.

Software Organization

Versions and Release
Numbers

Since HDF is under continual development, new releases are
periodically made available. Each new release of the HDF library is
identified by a version number.

The version number consists of three elements:
majorv Major version number
minorv Minor version number
rn Release number

The version number is presented in the following format:
majorv.minorvrrn (e.g., Version 3.2r1)

These elements are interpreted as follows:

Major version number
A new major version number is assigned when there is some
fundamental difference between a new version of the library and the

1 This is a simplified illustration of the HDF software layers.  Though the basic principles illustrated here continue to apply,
the introduction of netCDF and multiple-file HDF data structures renders the implementation considerably more complex.
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previous version. When a new major version is released, HDF users
and developers are strongly encouraged to obtain the new source code
and documentation. There will probably be added functionality in
successive major versions of the library and some obsolete code may
be deleted.  Some user code may have to be modified to use the new
library.

Minor version number
A new minor version number indicates an intermediate release
between one major version and the next.  Changes will probably be
significant.  When a new minor version is released, users and
developers are strongly encouraged to obtain the new source code and
documentation.

Release number
A new release number is assigned when bug fixes or other small
modifications have been made. Using a new release of the same
version of the library will not usually require modifying existing
user code.

ANSI C and Portability To ensure that HDF can be easily ported to new platforms, all versions
of the HDF source code from Version 3.2 on will be written in ANSI
standard C, with special provisions for non-ANSI compilers. For more
information about porting HDF and writing portable HDF-based code,
refer to Chapter 7, "Making HDF Portable."

Modules and Interfaces The HDF distribution contains many source files or modules that can
be grouped into families. For example, dfp.c, dfpf.c, and dfpff.f
all share the root name dfp and, therefore, all belong to the dfp
family. In general, each family of source modules represents one HDF
applications interface; the dfp family represents the HDF Palette
Interface. Exceptions to this rule will be discussed later in this section.

For each interface, there is necessarily one file that contains the C code
that provides the basic functionality of that interface. But some
interfaces may have one or two additional code modules that provide
FORTRAN callability for the interface, so families may have one, two,
or three files:

1 file Modules of this sort are generally not calling interfaces
themselves; they provide useful support functions for actual
calling interfaces. Since they are not meant to be called by any
routine outside the HDF library, they do not need to be
FORTRAN-callable. Example: hblocks.c is called only by
internal HDF routines and has only the C-callable interface.

2 files Although there are currently no two-file families, it is
conceivable (and desirable) that some future interface will need
only one extra source module to provide FORTRAN
compatibility. If this were to happen, there would only be two
source modules for the interface. Example: dfnew.c and
dfnewf.c would make up the New Interface.

3 files Most current implementations of FORTRAN-callable HDF
interfaces require that character string arguments be passed to
some of their functions. Due to differences in the way C and
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FORTRAN represent strings, passing strings requires that
there be a small amount of special purpose FORTRAN code
written for each function that takes a string argument.

Therefore, most FORTRAN-callable HDF interfaces consist of
three source modules:

• The primary C module
• A FORTRAN-callable C module
• A FORTRAN module

Example: dfsd.c, dfsdf.c, and dfsdff.f make up the
Scientific Data Set Interface. dfsd.c contains the basic
functionality of the interface. dfsdf.c provides the major
part of FORTRAN callability. And dfsdff.f contains the
special purpose FORTRAN code that enables passing character
string arguments.

Header Files In addition to the source code modules discussed above, some interfaces
also have C header files associated with them that are meant to be
included by C applications programmers with the #include
preprocessor directive. They contain useful constants and data structures
for interaction with the interface from C programs. The header files can
be identified by the same name as the root name for the rest of the
family with the .h extension. For example, dfsd.h is the header file
for the Scientific Data Set Interface.

Of particular importance among the C header files are hdf.h and
hdfi.h:
hdf.h Contains all the symbolic constants and public data structures

required by HDF.  hdf.h should be included by any program
that uses any of these constants or data structures.

hdfi.h Contains specific portability information about each platform
on which HDF is supported.  hdfi.h is automatically
included in programs when hdf.h is included, so
programmers need not explicitly include it.

Refer to Chapter 7, “Making HDF Portable,” for more information on
hdfi.h and other portability issues.

By way of illustration, Table 2.1 lists selected families of source code
modules and header files from of HDF Version 3.3.

Table 2.1 Sample HDF Version 3.3 Source Code Modules

General
headers

General
purpose

Grouping
(non-Vset)

Ut i l i t ies Annota-
t ions

General
rasters

Scientif ic
data sets

Vsets

hdf.h
hdfi.h
hproto.h
dfivms.h

hfile.c
hfilef.c
hfileff.f
hkit.c
hblocks.c
hextelt.c
herr.c
herrf.c
hfile.h
herr.h

dfgroup.c
dfgroup.h

dfutil.c
dfutilf.c
dfutilff.f
dfutil.h

dfan.c
dfanf.c
dfanff.f
dfan.h

dfgr.c
dfgr.h
dfcomp.c
dfimcomp.c
dfrig.h

dfsd.c
dfsdf.c
dfsdff.f
dfsd.h

vg.c
vgf.c
vgff.f
vfp.c
vgi.h
vio.c
vconv.c
vparse.c
vrw.c
vsfld.c
vg.h
vproto.h



HDF Software Overview

April 12, 1996 2-5

The HDF Test Suite In addition to the source code for the HDF library, versions 3.2 and
higher include a test suite. There are two test modules: one for C and
one for FORTRAN.  Each module tests all of the routines in all of the
application interfaces and in the general purpose interface.  The exact
form of these test modules may vary from one release to the next;
consult the release code and online test documentation for details.

Every effort has been made to ensure that the test programs provide a
thorough and accurate assessment of the health of the HDF library.
Although the test suite will greatly improve the reliability of HDF
code, it is almost inevitable that some parts of the code will remain
untested. Therefore, no guarantees can be made on the basis of test suite
performance.

Sample HDF Programs Each HDF release includes several sample programs to help users write
HDF programs. They illustrate some of the common techniques
employed by HDF programmers.

Some HDF Conventions

The HDF specification described in the previous chapter is not
sufficient to guarantee its success. It is also important that HDF
programmers and users adhere to certain conventions. Some guidelines
are implicit in the discussions in other sections of this document.
Others are presented in the document NCSA HDF Calling Interfaces and
Utilities (for Versions 3.2 and earlier) or in the NCSA HDF User’s
Guide and NCSA HDF Reference Manual (for Version 3.3).

Guidelines not covered elsewhere are introduced in this section.

Naming and Assigning
Tags

Tags that are to be made available to a general population of HDF users
should be assigned and controlled by NCSA. Tags of this type are given
numbers in the range 1 to 32,767. If you have an application that fits
this criterion, contact NCSA at the address listed in the front matter at
the beginning of this manual and specify the tags you would like. For
each tag, your specifications should include a suggested name,
information about the type and structure of the data that the tag will
refer to, and information about how the tag will be used. Your
specifications should be similar to those contained in Chapter 6, “Tag
Specifications.” NCSA will assign a set of tags for your application
and will include your tag descriptions in the HDF documentation.

Tags in the range 32,768 to 64,999 are user-definable. That is, you can
assign them for any private application. If you use tags in this range,
be aware that they may conflict with other people's private tags.
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Using Reference Numbers
to Organize Data Objects

Note: Users are discouraged
from assigning any meaning to
reference numbers beyond
that imparted by the HDF
library.

The HDF library itself uses reference numbers solely to distinguish
among objects with the same tag. While application programmers may
find it convenient to impart some meaning to reference numbers, they
should be forewarned that the HDF library will be ignorant of any such
meaning.

Multiple References Multiple references to a single data element are quite common in HDF.
The general purpose routine Hdupdd generates a new reference to data
that is already pointed to by another DD. If Hdupdd is used several
times, there may be several DDs that point to the same data element.

It is important to note that when a multiply-referenced data element is
deleted or moved, the various DDs that previously pointed to the data
element are not automatically deleted or adjusted to point to the data
element in its new location. Consequently, each DD to be deleted or
moved should be checked for multiple references and handled
appropriately.
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Chapter 3 General Purpose Interface

Chapter Overview

This chapter provides a detailed description of the routines that make
up the HDF general purpose interface.

Introduction

HDF supports several interfaces which can be categorized as high level
and  general purpose  interfaces:
• High level interfaces support utilities and applications.
• General purpose interfaces perform basic operations on HDF files.
These levels are illustrated in Figure 3.1, “HDF Software Layers.”

Figure 3.1. HDF Software Layers

HDF Utilities NCSA Applications 3rd Party Applications

HDF Application Interfaces

HDF Low Level Interfaces

HDF File

This chapter is concerned only with the general purpose routines.

Using these routines, you will be able to build and manipulate HDF
objects of any type, including those of your own design. All HDF
applications developed at NCSA use them as basic building blocks.

The general purpose routines are all written in C but are typically
accessible from FORTRAN.

New General purpose Routines with Version 3.2

The general purpose routines described in this chapter were new with
HDF Version 3.2, released in June 1992; they replace the routines
provided with earlier versions. The new routines provide better
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performance and increased functionality and users are strongly advised
to use them in new applications. The old routines are supported through
emulation, but may be eliminated from the HDF library in a future
release.

The new lower layer incorporates the following improvements:
• More consistent data and function types
• More meaningful and extensive error reporting
• Simplification of key lower level functions
• Simplified techniques to facilitate portability
• Support for alternate forms of physical storage, such as linked

blocks storage and storage of the data portion of an object in an
external file

• A version tag to indicate which version of the HDF library last
changed a file

• Support for simultaneous access to multiple files
• Support for simultaneous access to multiple objects within a single

file

The previous lower layer was called the DF layer because all routines
began with the letters DF (e.g., DFopen and DFclose).  The new
lower layer is called the H layer because all routines begin with the
letter H (e.g., Hopen, Hclose, and Hwrite). The source modules
containing these routines begin with the letter h (see Table 2.1, “HDF
Version 3.2 source code modules”):

hfile.c Basic I/0 routines
herr.c Error-handling routines
hkit.c General purpose routines
hblocks.c Routines to support linked block storage
hextelt.c Routines to support external storage of HDF data

elements

Overview of the Interface

This section provides specifications and descriptions of the public
functions of the general purpose interface.

Opening and Closing HDF
Files

These calls are used to open and close HDF files:

Hopen Provides an access path to an HDF file and reads all of the
DD blocks in the file into memory

Hclose Closes the access path to a file

Locating Elements for Access
and Getting Information

These routines locate elements or acquire other information about an
HDF file or its data objects. Except for Hendaccess, they initialize the
element that they locate and return an access ID that is used in later
references to the data element. Calls can include wildcards so that one
can search for unknown tags and reference numbers (tag/refs).

Hstartread Locates an existing data element with matching
tag/ref and returns an access ID for reading it

Hnextread Continues the search with the same access ID

Hendaccess Disposes of access ID for tag/ref

Hinquire Returns access information about a data element
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Hishdf Determines whether a file is an HDF file.

Hnumber Returns the number of occurrences of a specified
tag/ref in a file

Hgetlibversion Returns version information for the current HDF
library

Hgetfileversion Returns version information for an HDF file

Reading and Writing Entire
Data Elements

There are two sets of routines for reading and writing data elements.
The routines described here are used to store and retrieve entire data
elements.

Hputelement Adds or replaces elements in a file

Hgetelement Reads data elements in a file

A second set of routines, described in the next section, may be used if
you wish to access only part of a data element.

Reading and Writing Part of a
Data Element

The second set of routines for reading and writing data elements makes
it possible to read or write all or part of a data element. One of the
access routines Hstartread or Hstartwrite must be called before
these Hwrite, Hread, or Hseek:

Hstartwrite
Sets up writing to the object with the supplied tag/ref. If the
object exists, it will be modified; otherwise it will be
created.

Hwrite Writes data to a data element where the last write or Hseek()
stopped.  If the space reserved is less than the length to
write, then only as much as can fit is written.

Hread Reads a portion of a data element. It starts at the last
position left by an Hread or Hseek call and reads any data
that remains in the element up to a specified number of
bytes.

Hseek Sets the access pointer to an offset within a data element.
The next time Hread or Hwrite is called, the access
occurs from the new position. The location to seek can be
specified as an offset from the current location, from the
start of the element, or from the end of the element..

Manipulating Data
Descriptors (DDs)

These routines perform operations on DDs without doing anything with
the data to which the DDs refer:

Hdupdd Generates new references to data that is already
referenced from somewhere else

Hdeldd Deletes a tag/ref from the list of DDs

Hnewref Returns the next available reference number for the HDF
file
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Creating Special Data
Elements

HDF 3.2 introduces two alternate methods of storing HDF objects:
linked blocks and external elements. In previous releases, any data
element had to be stored contiguously and all of the objects in an HDF
file had to be in the same physical file.  The contiguous requirement
caused many problems, especially with regard to appending to existing
objects. If you wanted to append data to an object, the entire data
element had to be deleted and rewritten to the end of the file.

Linked blocks allow elements in a single HDF file to be non-
contiguous.

External elements allow a single HDF object to be stored in an external
file.

It is not currently possible to store a single object (such as a very large
data set) in multiple files. Nor can multiple objects be stored in one
external file.

Once they are created with the following routines, these special data
elements can be accessed with the routines used for normal data
elements:

HLcreate Creates a new linked block special data element

HXcreate Creates a new external file special data element

These routines have two modes of operation. Calling HLcreate with a
tag/ref that does not exist in a file will create a new element with the
given tag/ref which will be stored as linked blocks. On the other hand,
if the tag/ref already exists in the file, the referenced object will be
promoted to linked block status. All data which had been stored in the
object before the promotion will be retained. HXcreate behaves
similarly.

Development Routines The HDF library provides the following developer-level routines that
simplify the task of writing HDF applications. Most of these routines
mirror basic C library functions which are, unfortunately, not always
completely portable in their library form:

HDgettagname Returns a pointer to a text string describing a given
tag

HDgetspace Allocates space

HDfreespace Frees space

HDstrncpy Copies a string from one location to another up to a
given number of characters

Error Reporting The HDF library  incorporates the notion of an error stack. This allows
much of the context to be known when trying to decipher an error
message.

Error reporting is handled by the following routines:

HEprint Prints out all of the errors on the error stack to a specified
file

HEclear Clears the error stack

HERROR Reports an error
Pushes the following information onto the error stack:
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Error type
source file name
Line number and the name of the function reporting

the error

HEreport Adds a text string to the description of the most recently
reported error (only one text string per error)

Standard C does not enable the code inside a function to know the
name of the function. Therefore, to use the macro HERROR to report
errors, there must exist a variable FUNC which points to a string
containing the name of the reporting function.

Other The Hsync routine has been defined and implemented to synchronize a
file with its image in memory.  Currently it is not very useful because
the HDF software includes no buffering mechanism and the two images
are always identical.  Hsync will become useful when buffering is
implemented:

Hsync Synchronizes the stored version of an HDF file with the
image in memory
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Function Specifications

The terms IN: and OUT: are used as follows in this discussion:
IN: Value as input parameter
OUT: Value as output parameter

Opening and Closing Files

Hopen

int32 Hopen(char *path, int access, int16 ndds)

path IN: Name of file to be opened
access IN: DFACC_READ, DFACC_RDWR, DFACC_CREATE, DFACC_ALL, or

DFACC_WRITE
ndds IN: Number of DDs in a block if this file needs to be created

Purpose Provides an access path to an HDF file and reads all of the DD blocks in the file
into primary memory.

Return value Returns file ID if successful and FAIL (-1) otherwise.

Description Opens an HDF file.

The following events occur on successful exit:

• File_rec members are filled in. (File_rec is an internal HDF structure
containing information about the opened file.)

• The requested file is opened with the relevant permission.
• Information about DDs is set up in memory.
• The file headers and initial information are set up for new files.

Access privilege codes
HDF provides several constants for use as access privilege codes as listed below.
Note that these constants are not bit-flags and should not be ORed together to
combine access modes. Doing so may cause odd behavior and, in some cases,
loss of data:

Recommended:
DFACC_READ Open for read only. If file does not exist, error.
DFACC_RDWR Open for read/write. If file does not exist, create it.
DFACC_CREATE Force creation. If file exists, delete it, then open a new file

for read/write (in the spirit of the UNIX System command
clobber).

Others:
DFACC_ALL Same as DFACC_RDWR (obsolete but still supported).
DFACC_WRITE Same as DFACC_RDWR (obsolete but still supported).
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Hclose

intn Hclose(int32 id)

id IN: The file ID of the file to be closed

Purpose Closes the access path to the file.

Return value Returns SUCCEED (0) if successful and FAIL (-1) otherwise.

Description id is first validated. If valid, the function closes the access path to the file.

If there are still access elements attached to the file, the error DFE_OPENAID is
pushed onto the error stack and the file is not closed. This is a fairly common
error when developing new interfaces. See the discussion of Hendaccess below
for debugging hints.



NCSA HDF Specification and Developer’s Guide

3-8 National Center for Supercomputing Applications

Locating Elements for Access and Getting Information

Hstartread

int32 Hstartread(int32 file_id, uint16 tag, uint16 ref)

file_id IN: ID of file to attach access element to
tag IN: Tag to search for
ref IN:  Reference number to search for

Purpose Locates an existing data element with matching tag/ref and returns an access ID
for reading it.

Return value Returns access element ID if successful and FAIL (-1) otherwise.

Description Searches the DDs for a particular tag/ref combination. If the search is successful,
an access element is created, attached to the file, and positioned at the start of
that data element; otherwise an error is returned. Searching on wildcards begins
from the beginning of the DD list. Wildcards can be used for the tag or reference
number (DFTAG_WILDCARD and  DFREF_WILDCARD) and they match any values.

Hnextread

intn Hnextread(int32 access_id, uint16 tag, uint16 ref, int origin)

access_id IN: ID of a READ access element
tag IN: Tag to search for
ref IN: Reference number to search for
origin IN: Position at which to start searching

Purpose Locates and positions a read access ID on next occurrence of tag/ref.

Return value Returns SUCCEED (0) if successful and FAIL (-1) otherwise.

Description Searches for the next DD that fits the tag/ref. Wildcards apply. If origin is
DF_START, searches from start of DD list; if origin is DF_CURRENT, searches
from current position. Searching from the end of the file via DF_END is not yet
implemented.

If the search is successful, then the access element is positioned at the start of
that tag/ref; otherwise, the access ID is not modified.
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Hstartwrite

int32 Hstartwrite(int32 file_id, uint16 tag, uint16 ref, int32 length)

file_id IN: ID of file to write to
tag IN: Tag to write to
ref IN: Reference number to write to
length IN: Length of the data element

Purpose Creates or replaces data element with matching tag/ref.

Return value Returns access element ID if successful and FAIL (-1) otherwise.

Description Sets up an access element to write a data element. The DD list of the file is
searched first; if the tag/ref is found, the data element can be modified. If an
object with the corresponding tag/ref is not found, a new one is created.

Hendaccess

int32 Hendaccess(int access_id)

access_id IN: ID of access element to dispose of

Purpose Disposes of access element for tag/ref.

Return value Returns SUCCEED (0) if successful and FAIL (-1) otherwise.

Description Disposes of an access element. Only a finite number of access elements can be
active at a given time, so it is important to call Hendaccess whenever you are
done using an element.

When developing new interfaces, a common mistake is to fail to call
Hendaccess for all of the elements accessed. When this happens, Hclose will
return FAIL and the dump of the error stack (see HEprint below) will tell how
many access elements are still active.

This can be a difficult problem to debug, as the low levels of the HDF library
have no idea who or what opened an access element and forgot to release it. A
tedious but effective means of debugging this problem is to annotate with
comments the locations where the attached count of a file record is changed.
This occurs in the files hfile.c, hblocks.c, and hextelt.c.
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Hinquire

intn Hinquire(int32 access_id, int32 *pfile_id, uint16 *ptag,
uint16 *pref, int32 *plength, int32 *poffset, int32 *pposn,
int *paccess, int16 *pspecial)

access_id IN: Access element ID
pfile_id OUT: File ID
ptag OUT: Tag of the element pointed to
pref OUT: Reference number of the element pointed to
plength OUT: Length of the element pointed to
poffset OUT: Offset of element in the file
pposn OUT: Position pointed to within the data element
paccess OUT: Access type of this access element
pspecial OUT: Special code

Purpose Returns access information for a data element.

Return value Returns SUCCEED (0) if the access element points to some data element and
FAIL (-1) otherwise.

Description Inquires for the statistics of the data element pointed to by the access element. If
a piece of information is not needed, a NULL can be sent in for that value.
Convenience macros for calls to Hinquire (HQuerypositon,  HQuerylength,
etc.) are defined in hdf.h.

Hishdf

int32 Hishdf(char *path)

path IN: Name of file

Purpose Determines whether a file is an HDF file.

Return value Returns TRUE (non-zero) if file is an HDF file and FALSE (0) otherwise.

Description The decision as to whether a file is an HDF file is based solely on the magic
number stored in the first four bytes of an HDF file. Hishdf may sometimes
identify a file as an HDF file that Hopen is unable to open (e.g., an HDF file
with a corrupted DD list).

Note:  Hishdf only
determines whether a file is
an HDF file.  It does not verify
that the file is readable.
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Hnumber

int Hnumber(int32 file_id, uint16 tag)

file_id IN: File ID
tag IN: Tag to be counted

Purpose Counts the number of occurrences of a tag in a file.

Return value The number of occurrences of a tag in a file.

Hgetlibversion

Hgetlibversion(uint32 *majorv, uint32 *minorv, uint32 *release,
char string[])

majorv OUT: Major version number
minorv OUT: Minor version number
release OUT: Release number
string OUT: Informational text string

Purpose Gets version information for current HDF library.

Return value Returns SUCCEED (0).

Description Returns the version of the HDF library.  The version information is compiled
into the HDF library, so it is not necessary to have any open files for this
function to execute.

Hgetfileversion

Hgetfileversion(uint32 file_id, uint32 *majorv, uint32 *minorv,
uint32 *release, char *string)

file_id IN: File ID
majorv OUT: Major version number
minorv OUT: Minor version number
release OUT: Release number
string OUT: Informational text string

Purpose Gets version information for an HDF file.

Return value Returns SUCCEED (0) if successful and FAIL (-1) otherwise.

Description Returns the HDF version information stored in the given file.
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Reading and Writing Entire Data Elements

Hputelement

int Hputelement(int32 file_id, uint16 tag, uint16 ref, uint8 *data,
int32 length)

file_id IN: File ID
tag IN: Tag of data element to put
ref IN: Reference number of data element to put
data IN: Pointer to buffer
length IN: Length of data

Purpose Adds or replaces an element in a file.

Return value Returns SUCCEED (0) if successful and FAIL (-1) otherwise.

Description Writes a new data element or replaces an existing data element in a HDF file.
Uses Hwrite and its associated routines.

Hgetelement

int Hgetelement(int32 file_id, uint16 tag, uint16 ref, uint8 *data)

file_id IN: ID of the file to read from
tag IN: Tag of data element to read
ref IN: Reference number of data element to read
data OUT: Buffer to read into

Purpose Obtains the data referred to by the passed tag/ref.

Return value Returns SUCCEED (0) if successful and FAIL (-1) otherwise.

Description Reads a data element from an HDF file and puts it into the buffer pointed to by
data. The space allocated for the buffer is assumed to be large enough.

Note:  Hgetelement assumes
that the buffer is large enough
to hold the data being read.  It
is the user’s responsibility to
prevent data loss by ensuring
that this is the case.
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Reading and Writing Part of a Data Element

Hread

int32 Hread(int32 access_id, int32 length, uint8 *data)

access_id IN: Read access element ID
length IN: Length of segment to read in
data OUT: Pointer to data array to read to

Purpose Reads a portion of a data element.

Return value Returns length of segment actually read if successful and FAIL (-1) otherwise.

Description Reads in the next segment in the data element pointed to by the access element.
Hread starts at the last position left by an Hread or Hseek call and reads any
data that remains in the element up to length bytes. If the data element is too
short (less than length bytes long), Hread reads to the end of the data
element.

Hwrite

int32 Hwrite(int32 access_id, int32 length, uint8 *data)

access_id IN: Write access element ID
length IN: Length of segment to write
data IN: Pointer to data to write

Purpose Writes next data segment to data element.

Return value Returns length of segment successfully written and FAIL (-1) otherwise.

Description Writes the data to the data element where the last Hwrite or Hseek stopped.

Hwrite starts at the last position left by an Hwrite or Hseek call, writes up to
a specified number of bytes, and leaves the write pointer at the end of the data
written. If the space reserved is less than the length to write, then only as much
as can fit is written.

It is the user’s responsibility to ensure that no two access elements are writing to
the same data element. Note that a user can interlace writes to multiple data
elements in the same file.
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Hseek

intn Hseek(int32 access_id, int32 offset, int origin)

access_id IN: Access element ID
offset IN: Offset to seek to
origin IN: Position to seek from:

DF_START (0) offset from beginning of data element
DF_CURRENT (1) offset from current position
DF_END (2) offset from end of data element

Purpose Sets the access pointer to an offset within a data element. The next time Hread
or Hwrite is called, the read or write occurs from the new position.

Return value Returns SUCCEED (0) if successful and FAIL (-1) otherwise.

Description Sets the position of an access element in a data element so that the next Hread
or Hwrite will start from that position. origin determines the position from
which offset should be counted.

This routine fails if the access element is not associated with a data element or if
the position sought is outside of the data element.

Seeking from the end of a data element is not currently supported.



HDF General Purpose Interface

April 12, 1996 3-15

Manipulating Data Descriptors

Hdupdd

int Hdupdd(int32 file_id, uint16 tag, uint16 ref, uint16 old_tag,
uint16 old_ref)

file_id IN: File ID
tag IN: Tag of new data descriptor
ref IN: Reference number of new data descriptor
old_tag IN: Tag of data descriptor to duplicate
old_ref IN: Reference number of data descriptor to duplicate

Purpose Generates new references to data that is already referenced from somewhere
else.

Return value Returns SUCCEED (0) if successful and FAIL (-1) otherwise.

Description Duplicates a data descriptor so that the new tag/ref points to the same data
element pointed to by the old tag/ref.

Hdeldd

int Hdeldd(int32 file_id, uint16 tag, uint16 ref)

file_id IN: File ID
tag IN: Tag of data descriptor to delete
ref IN: Reference number of data descriptor to delete

Purpose Deletes a tag/ref from the list of DDs.

Return value Returns SUCCEED (0) if successful and FAIL (-1) otherwise.

Description Deletes the data descriptor of tag/ref from the DD list of the file. This routine is
unsafe and may leave a file in a condition that is not usable by some routines.
Use with care.
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Hnewref

uint16 Hnewref(int32 file_id)

file_id IN: File ID

Purpose Returns the next available reference number.

Return value Returns the reference number if successful and 0 otherwise.

Description Returns a reference number that can be used with any tag to produce a unique
tag/ref. Successive calls to Hnewref will generate a strictly increasing sequence
until the highest possible reference number has been returned; then Hnewref
will return unused reference numbers starting from 1.
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Creating Special Data Elements

HLcreate

int32 HLcreate(int32 file_id, uint16 tag, uint16 ref,
int32 block_length, int32 number_blocks)

file_id IN: File ID
tag IN: Tag of new data element (or object)
ref IN: Reference number of new data element (or object)
block_length IN: Length of blocks to be used
number_blocks IN: Number of blocks to use per linked block record

Purpose: Creates a new linked block special data element.

Return value Returns access ID for special data element if successful and FAIL (-1)
otherwise.

Description Appending to existing HDF elements was a problem prior to HDF Version 3.2
because HDF objects had to be stored contiguously. When appending, the HDF
library forced the user to delete the existing element and rewrite it at the end of
the file. HDF Version 3.2 introduced the concept of linked blocks, which allow
unlimited appending to existing elements without copying over existing data.

This routine can be used to create an object with the given tag/ref as a linked
block element or to promote an existing element to be stored in linked blocks.

Initially, a table is set up to accommodate number_blocks linked blocks for the
specified data object. Each block has block_length bytes. If an existing object
is being promoted, block_length does not have to be the same size as the
original element.

HLcreate returns an active access ID with write permission to the linked block
element.
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HXcreate

int32 HXcreate(int32 file_id, uint16 tag, uint16 ref,
char *extern_file_name)

file_id IN: file record ID
tag IN: Tag of the special data element to create or promote
ref IN: Reference number of the special data element to

create/promote
extern_file_name IN: name of the external file to use for the data element

Purpose Creates a new external file special data element.

Return value Returns access ID for special data element if successful and FAIL (-1)
otherwise.

Description Creates a new element in an external file or promotes an existing element to be
stored in an external file. If an existing element is to be promoted, it is deleted
(using Hdeldd) from the original file and copied into the new external file.

Distributing a single object over multiple external files is not currently
supported. In addition, one cannot place multiple objects in the same external
file.

This routine returns an active access ID with write permission to the external
element.
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Development Routines

HDgettagname

char *HDgettagname(uint16 tag)

tag IN: Tag to look up

Purpose Gets a meaningful description of a tag.

Return value Returns a pointer to a string describing this tag or NULL if the tag is unknown.

Description To reduce the amount of duplicated code, this routine can be used to map a tag
to a character string containing the name of the tag.

The string returned by this routine is guaranteed to be 30 characters or less.

HDgetspace

void *HDgetspace(uint32 qty)

qty IN: Number of bytes to allocate

Purpose Allocates space.

Return value If successful, returns a pointer to space that was allocated; otherwise returns
NULL .

Description Uses an appropriate allocation routine on the local machine to get space.

HDfreespace

void *HDfreespace(void *ptr)

ptr IN: Pointer to previously-allocated space that is to be freed

Purpose Frees space.

Return value Returns NULL.

Description Uses an appropriate routine on the local machine to free space. This routine is
platform dependent.
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HDstrncpy

char *HDstrncpy(register char *dest, register char *source,
int32 length)

dest OUT: Pointer to area to copy string to
source IN: Pointer to area to copy string from
length IN: Maximum number of bytes to copy

Purpose Copies a string with maximum length length.

Return value Returns address of dest.

Description Creates a string in dest that is at most length characters long. The number of
characters must include the NULL terminator for historical reasons. Hence, if
you are working with the string Foo, you must call this copy function with the
value 4 (three characters plus the NULL terminator) in length.
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Error Reporting

HEprint

void HEprint(FILE *stream, int32 level)

stream IN: Stream to print error messages on
level IN: Level of the error stack to print

Purpose Prints information on the error stack.

Return value Has no return value.

Description Prints information on reported errors. If level is zero, all of the errors
currently on the error stack are printed. Output from this function is sent to the
file pointed to by stream.

The following information printed:
• An ASCII description of the error
• The reporting routine
• The reporting routine’s source file name
• The line at which the error was reported
If the programmer has supplied extra information by means of HEreport, this
information is printed as well.

HEclear

void HEclear(void)

Purpose Clears all information on reported errors off of the error stack.

Return value Has no return value.

Description Clears all of the information off of the error stack.

HERROR

void HERROR(int16 number)

number IN: Error number

Purpose Reports an error.

Return value Has no return value.

Description Reports an error. Any function calling HERROR must have a variable FUNC
which points to a string containing the name of the function.

HERROR is implemented as a macro.
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HEreport

void HEreport(char *format, ....)

format IN: printf-style format and arguments

Purpose Provides extra information to the error reporting routines.

Return value Has no return value.

Description Provides further annotation to an error report. Only one such annotation is
remembered for each error report. The arguments to this routine follow the style
of printf.

Consider the following example from hfile.c:

char *FUNC = "Hclose";
....
if (file_rec->attach > 0) {

file_rec->refcount++;
HERROR(DFE_OPENAID);
HEreport("There are still %d active aids attached", file_rec->attach);
return FAIL;

}
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Other

Hsync

int Hsync(int32 file_id)

file_id IN: ID of the file to synchronize

Purpose Synchronizes on-disk HDF file with image in memory.

Return value Returns SUCCEED.

Description Hsync is not included in the current HDF library release because the on-disk
representation of an HDF file is always the same as its in-memory
representation. Hsync will be provided when future releases implement buffering
schemes.
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Chapter 4 Sets and Groups

Chapter Overview

This chapter discusses the roles of the following sets and groups in
organizing data stored in an HDF file:
• Raster image sets (RIS)

Raster image groups (RIG)
• Scientific data sets (SDS)

Scientific data groups (SDG)
Numeric data groups (NDG)
SDG-like NDGs

• Vsets
Vgroups

• Raster-8 sets (obsolete)

This chapter introduces several tags used in support of sets and groups.
All of these tags are fully described in Chapter 6, “Tag Specifications,”
and are listed in the table in Appendix A, “NCSA HDF Tags.”

Data Sets

HDF files frequently contain several closely related data objects. Taken
together, these objects form a data set which serves a particular user
requirement. For example, five or six data objects might be used to
describe a raster image; eight or more data objects might be used to
describe the results of a scientific experiment.

The HDF mechanism for specifying and controlling data sets is the
group.  The data element of a group consists of a single record listing
the tag/refs for all the objects contained in the data set. For example,
the raster image groups described in the following sections each contain
three tag/refs that point to three data objects that, taken as a set, fully
describe an 8-bit raster image.

Types of Sets The current HDF implementation supports three kinds of sets:

Raster image set
A set containing a raster image and descriptive information such
as the image dimensions and an optional color lookup table

Scientific data set
A set containing a multidimensional array and information
describing the data in the array
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Vset
A general grouping structure containing any kinds of HDF
objects that a user wishes to include

Each HDF set is defined with a minimum collection of data objects that
will make sense when the set is used. For example, every raster image
set must contain at least the following data objects:

Raster image group
The list of  the members of the set

Image dimension record
The width, height, and pixel size of the raster image

Raster image data
The pixel values that make up the image

In addition to the required objects, a set may include optional data
objects. An 8-bit raster image set, for instance, often contains a palette,
or color lookup table, which defines the red, green, and blue values
associated with each pixel in the raster image.

Calling Interfaces for
S e t s

NCSA provides calling interfaces for all the HDF sets that it supports.
These interfaces provide routines for reading and writing the data
associated with each set. The libraries currently supported by NCSA are
callable from either C or FORTRAN programs.

In addition to the libraries, a growing number of command-line utilities
are available to manipulate sets. For example, a utility called r8tohdf
converts one or more raw raster images to HDF 8-bit raster image set
format.

The calling interfaces are described in the document NCSA HDF
Calling Interfaces and Utilities  for Versions 3.2 and earlier and in the
NCSA HDF User’s Guide and NCSA HDF Reference Manual for
Version 3.3.

Groups

As discussed above, HDF data objects are frequently associated as sets.
But without some explicit identifying mechanism, there is often no
way to tie them together.  To address this problem, HDF provides a
grouping  mechanism called a group.  A group is a data object that
explicitly identifies all of the data objects in a set.

Since a group is just another type of data object, its structure is like
that of any other data object; it includes a DD and a data element. But
instead of containing the pixel values for a raster image or the
dimensions of an array, a group data element contains a list of tag/refs
for the data objects that make up the corresponding set.

A group tag can be defined for any set. For instance, the raster image
group  tag (RIG, DFTAG_RIG) is used to identify members of raster
image sets; the RIG data element lists the tag/refs for a particular raster
image set.
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An Example Suppose that the two images shown in Figure 1.5, “Physical
Representation of Data Objects,” are organized into two sets with group
tags. Since they are raster images, they may be stored as RIGs. Figure
4.1 illustrates the use of RIGs with these images.

Figure 4.1 Physical Organization of Sample RIG Groupings

Offset Item Contents

0 FH 0e031301 (HDF magic number)

4 DDH 10 0L

10 DD DFTAG_FID 1 130 4

22 DD DFTAG_FD 1 134 41

34 DD DFTAG_LUT 1 175 768

46 DD DFTAG_ID 1 943 4

58 DD DFTAG_RI 1 947 240000

70 DD DFTAG_ID 2 240947 4

82 DD DFTAG_RI 2 240951 240000

94 DD DFTAG_RIG 1 480951 12

106 DD DFTAG_RIG 2 480963 12

118 DD DFTAG_NULL (Empty)

130 Data sw3

134 Data solar wind simulation: third try. 8/8/88

175 Data ... (Data for image palette)

943 Data 400, 600 ... (Data for 1st image dimension record)

947 Data ... (Data for 1st raster image)

240947 Data 400, 600 ... (Data for 2nd image dimension record)

240951 Data ... (Data for 2nd raster image)

480951 Data DFTAG_IP8/1, DFTAG_ID/1, DFTAG_RI/1
(Tag/refs for 1st RIG)

480963 Data DFTAG_IP8/1, DFTAG_ID/2, DFTAG_RI/2
(Tag/refs for 2nd RIG)

The file depicted in Figure 4.1 contains the same raster image
information as the file in Figure 1.5, but the information is organized
into two sets. Note that there is only one palette (DFTAG_IP8/1) and
that it is included in both groups.

General Features of
Groups

Figure 4.1 also illustrates a number of important general features of
groups:

• The contents of a group must be consistent with one another. Since
the palette (DFTAG_IP8) is designed for use with 8-bit images, the
image must be an 8-bit image.

• An application program can easily process all of the images in the
file by accessing the groups in the file. The non-RIG information in
the example can be used or ignored, depending on the needs and
capabilities of the application program.

• There is usually more than one way to group sets. For example, an
extra copy of the image palette (DFTAG_IP8) could have been stored
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in the file so that each grouping would have its own image palette.
That is not necessary in this instance because the same palette is to
be used with both images. On the other hand, there are two image
dimension records in this example, even though one would suffice.

• Group status does not alter the fundamental role of an HDF object;
it is still accessible as an individual data object despite the fact that
it also belongs to a larger set.

• A group provides an index of the members of a set. There is nothing
to prevent the imposition of other groupings (indexes) that provide a
different view of the same collection of data objects. In fact, HDF is
designed to encourage the addition of alternate views.

The following sections formally describe raster image sets (RIS),
scientific data sets (SDS), Vsets, and several related groups.  The last
section of this chapter discusses an obsolete structure known as the
raster-8 set.
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Raster Image Sets (RIS)

The raster image set (RIS) provides a framework for storing images and
any number of optional image descriptors. An RIS always contains a
description of the image data layout and the image data.  It may also
contain color look-up tables, aspect ratio information, color correction
information, associated matte or other overlay information, and any
other data related to the display of the image.

Raster Image Groups
(RIG)

Tying everything together is the raster image group (RIG, see Figure
4.1 and the related discussion for an example). An RIG contains a list
of tag/refs that point in turn to the data objects that make up and
describe the image.

The number of entries in an RIG is variable and most of the descriptive
information is optional. Complex applications may include references
to image-modifying data, such as the color table and aspect ratio, along
with the reference to the image data itself. Simple applications may use
simple application-level calls and ignore specialized video production or
film color correction parameters.

NCSA currently supports two RIG calling interfaces: RIS8 and RIS24.
These interfaces are described in the document NCSA HDF Calling
Interfaces and Utilities for Versions 3.2 and earlier and in the NCSA
HDF User’s Guide and NCSA HDF Reference Manual for Version 3.3.

RIS Tags RIS implementations must fully support all of the tags presented in
Table 4.1.

Table 4.1 RIS Tags
Tag Contents of Data Element

DFTAG_RIG Raster image group

DFTAG_ID Image dimension record

DFTAG_RI Raster image data

With these tags, images can be stored and read from HDF files at any
bit depth, with several different component ordering schemes. As
illustrated in Figure 4.1, the RIG tag points to the collection of tag/refs
that fully describe the RIS. The data element attached to the tag
DFTAG_ID specifies the dimensions of the image, the number type of
the elements that make up its pixels, the number of elements per pixel,
the interlace scheme used, and the compression scheme used, if any.
The data element attached to the tag DFTAG_RI contains the actual raster
image data.
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Figure 4.1 RIS Tags

DD List (tag/ref):

"Data:"

RIG/1    ID/1    RI/1 

ID/1  RI/1  IP/1

200 x 300, etc.

The tags listed in Table 4.2 identify optional RIS information such as
color properties and aspect ratio.  Note that the RI interface supports
only DFTAG_LUT at this time; the other tags in Table 4.2 are defined
but the interfaces have not been implemented.

Table 4.2 Optional RIS Tags
Tag Contents of Data Element

DFTAG_XYP XY position of image

DFTAG_LD Look-up table dimension record

DFTAG_LUT Color look-up table for non true-color images

DFTAG_MD Matte channel dimension record

DFTAG_MA Matte channel data

DFTAG_CCN Color correction factors

DFTAG_CFM Color format designation

DFTAG_AR Aspect ratio

DFTAG_MTO Machine-type override
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Figure 4.2 illustrates the structure of an RIS that contains an image
palette (DFTAG_IP8).

Figure 4.2 RIS Tags for Sets Containing a Palette

DD List (tag/ref):

"Data:"

RIG/1    ID/1    RI/1   IP8/1

ID/1  RI/1  IP8/1

200 x 300, etc.

Raster Image
Compression

HDF currently supports two raster image compression tags:

DFTAG_RLE Run-length encoding
DFTAG_IMCOMP Aerial averaging
DFTAG_JPEG JPEG compression

RIG support does not require support for all compression tags. Be sure
to provide a suitable error message to the user when an unknown
compression tag is encountered.

Since new forms of data compression can be added to HDF raster
images, incompatibilities can arise between old libraries and files
created by newer libraries.  For example, HDF Version 3.3 includes
JPEG compression for images.  A JPEG-compressed raster image in a
file created by an HDF Version 3.3 library cannot be read by an HDF
Version 3.2 library.
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Scientific Data Sets

The scientific data set (SDS) provides a framework for storing
multidimensional arrays of data with descriptive information that
enhances the data. Current specifications support the following types of
numbers in SDS arrays.

• 8-bit, 16-bit, and 32-bit signed and unsigned integers
• 32-bit and 64-bit floating point numbers

Data in an SDS can be stored either as two's complement big endian
integers, as IEEE Standard floating point numbers, or in native mode,
the format used by the machine from which they were written.

The user interface for storing and retrieving SDSs is fully described in
the document NCSA HDF Calling Interfaces and Utilities  for Versions
3.2 and earlier and in the NCSA HDF User’s Guide and NCSA HDF
Reference Manual for Version 3.3.

Backward and forward
compatibility

One of NCSA’s concerns in HDF development is always to maximize
backward and forward compatibility; as much as possible, any
application written to use HDF should be able to read data files written
with an older or a newer version of the libraries.  To maximize this
compatibility, NCSA had to consider the following factors in upgrading
the SDS capabilities:

• Support for future variations (e.g., new number types, data
compression, and new physical arrangements for SDS storage)

• Older versions of the library should be able to read new data files if
the data itself can be interpreted by the older version.  To do so, the
older version must be able to determine whether the data in a given
data object will be comprehensible to it.  For example, if a newly
created file contains 32-bit IEEE floating point or Cray floating
point data objects, older versions of the library should be able
determine that fact then read and interpret the data.

• New libraries must be able to read and interpret files created by older
versions.

Unfortunately, such compatibility concerns yield an SDS structure
somewhat more complex than would otherwise be the case.  Two
examples illustrate the problem:

• HDF 3.2 development had to accommodate the fact that HDF
Version 3.1 and previous versions only supported 32-bit IEEE
floating-point numbers and Cray floating point numbers in SDSs.
SDSs in HDF versions since Version 3.2 support 8-bit, 16-bit, and
32-bit signed and unsigned integers, 32-bit and 64-bit floating-point
numbers, and the local machine format (native mode) for all
supported architectures.

• HDF 3.3 includes support for the netCDF data model, which
involved the creation of an entire new structure for supporting
netCDF objects, based on Vgroups and Vdatas.  At the same time, a
goal of HDF 3.3 was to harmonize the SDS and the netCDF data
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model, which was best accomplished by storing SDS objects in the
same way that netCDF objects are stored.  In order to maintain
backward compatibility, two structures had to be created for every
SDS or netCDF object: one that could be recognized by older HDF
libraries, and the new structure.

In the following sections we describe how the first problem was solved.
A later issue of this manual will describe how the second problem was
addressed.

Internal Structures The SDS capability was substantially enhanced for HDF Version 3.2.
Previous versions employed a structure known as a scientific data group
(SDG); Version 3.2 and subsequent versions use the numeric data group
(NDG).  To accommodate the enhanced structure and to remain
compatible with previous releases, the current HDF library supports the
following scientific and numerical data groups:

SDGs Created by old libraries and containing 32-bit IEEE and
Cray floating-point data.

NDGs Created by the newer libraries (Version 3.2 and later) and
containing any acceptable floating-point or non-floating-
point data. This data group will not be recognized by old
libraries.

SDG-like NDGs
Created by the new library and containing IEEE 32-bit
floating-point data only. The old libraries will recognize
and interpret these numerical data groups correctly.

The NDG structure supports 8-bit, 16-bit, and 32-bit signed and
unsigned integers, and 32-bit and 64-bit floating-point numbers. It also
supports native mode, data sets written to HDF files in the local
machine format.

The following sections describe the SDG, NDG, and SDG-like NDG
structures.

SDG Structures SDGs must contain at least the data objects listed in Table 4.3.

Table 4.3 Required SDG Tags
Tag Contents of Data Element

DFTAG_SDG Scientific data group.

DFTAG_SDD Dimension record for array-stored data. Includes the
rank (number of dimensions), the size of each
dimension, and the tag/refs representing the number
type of the array data and of each dimension.

All SDG number types are 32-bit IEEE floating-
point.

DFTAG_SD Scientific data.

In addition to the required data objects listed above, SDGs may contain
any of the objects listed in Table 4.4.  Note that the optional data
objects are the same for SDGs, NDGs, and SDG-like NDGs; the only
differences are the number types that may be used.
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Table 4.4 Optional SDG, NDG,
and SDG-like NDG
Tags

Tag Contents of Data Element

DFTAG_SDS Scales of the different dimensions. To be used when
interpreting or displaying the data (32-bit floating
point numbers only for SDGs and SDG-like NDGs).

DFTAG_SDL Labels for all dimensions and for the data. Each of
the dimension labels can be interpreted as an
independent variable; the data label is the dependent
variable.

DFTAG_SDU Units for all dimensions and for the data.

DFTAG_SDF Format specifications to be used when displaying
values of the data.

DFTAG_SDM Maximum and minimum values of the data. (32-bit
floating point numbers only for SDGs and SDG-like
NDGs.)

DFTAG_SDC Coordinate system to be used when interpreting or
displaying the data.

As illustrated in Figure 4.3, the SDG tag points to the collection of
tag/refs that define the SDG.

Figure 4.3 SDG
Structure DD  list (tag/ref)

Data

SDG/1    SDD/1     SD/1     SDM/1

SDD/1  SD/1   SDM/1 2.3  4.5  4.1 ...
2.5  4.8  4.3 ...
...
1.6  3.9  7.2 ...

max: 11.6
min:  0.2

54 x 60, etc.

NDG Structures NDGs must contain at least the data objects listed in Table 4.5

Table 4.5 Required NDG Tags

Tag Contents of Data Element

DFTAG_NDG Numerical data group.

DFTAG_SDD Dimension record for array-stored data. Includes the
rank (number of dimensions), the size of each
dimension, and the tag/refs representing the number
types of the data and of each dimension.
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In HDF 3.2 , the number types of dimension scales
must be the same as that of the array-stored data.
Later implementations allow dimension scales to be
typed separately.

DFTAG_SD Scientific data.

DFTAG_NT Number type of the data set. Default is the most
recent DFSDsetNT() setting. If DFSDsetNT() has
not been called, the default will be 32-bit IEEE
floating-point.

In addition to these required data objects, an NDG may contain any of
the data objects listed in Table 4.4, “Optional SDG, NDG, and SDG-
like NDG Tags.”

As illustrated in Figure 4.4, the basic NDG and SDG structures are
identical. The first clue to the difference is that the NDG tag replaces
the SDG tag. This is a flag to prevent older libraries from stumbling
over the more important difference; the NDG data element can
accommodate data that pre-Version 3.2 libraries cannot interpret. The
new tag ensures that older libraries will not recognize the data object
and thus will not try to interpret the new data types.  For example,
NDG data can include number types or a data compression scheme that
a pre-Version 3.2 library will not recognize.

Figure 4.4 NDG Structure

DD list (tag/ref)

Data

NDG/1    SDD/1     SD/1      SDM/1

SDD/1   SD/1   SDM/1 2.3  4.5  4.1 ...
2.5  4.8  4.3 ...
...
1.6  3.9  7.2 ...

max: 11.6
min:  0.2

54 x 60, etc.

SDG-like NDG Structures
As we have said earlier,
• SDGs, the SDS grouping structure available prior to HDF Version

3.2, could include only 32-bit floating point and Cray floating point
numbers.

• NDGs, available since Version 3.2, can include 8-bit, 16-bit, and
32-bit signed and unsigned integers, and 32-bit and 64-bit floating
point numbers.

• SDG-like NDGs, also available since Version 3.2, distinguish
SDSs that can still be read by the older versions of the library.

This backward compatibility is achieved by examining every SDS that
is written to an HDF file. If the SDS is compatible with older libraries,
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it is written to the file with both SDG and NDG structures. If it is not
compatible with older libraries, only the NDG structure is used.

Table 4.6 lists the objects that SDG-like NDGs must contain.

Table 4.6 Required SDG-like
NDG Tags Tag Contents of Data Element

DFTAG_NDG Numerical data group.

DFTAG_SDG Scientific data group.

DFTAG_SDLNK The NDG and SDG linked to the scientific data set
in this group.

DFTAG_SDD Dimension record for array-stored data. Includes the
rank (number of dimensions), the size of each
dimension, and the tag/refs representing the
number types of the data and of each dimension.

In an SDG-like NDG, the number types are all 32-
bit IEEE floating-point.

DFTAG_SD Scientific data.

SDG-like NDGs can include the same optional data objects as described
for SDGs and NDGs in Table 4.4, “Optional SDG, NDG, and SDG-
like NDG Tags.”

Figure  4.5 illustrates the SDG-like NDG structure.

Figure 4.5 SDG-like NDG Structure

DD List (tag/ref)

Data

SDG/1    NDG/1     SDLNK/1    SDD/1     SD/1    SDM/1

SDD/1  SD/1   SDM/1

2.3  4.5  4.1 ...
2.5  4.8  4.3 ...
...
1.6  3.9  7.2 ...

max: 11.6
min:  0.2

54 x 60, etc.

SDD/1  SD/1   SDM/1  SDLNK/1

SDG/1   NDG/1

Compatibility with
Future NDG Structures

Future HDF releases will probably support additional optional SDS
features.  These features will fall into the following categories:

Optional and compatible features
Optional features that are compatible with older HDF versions
even though they may not be supported in the older libraries.
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For example, a new time stamp attribute might be added. The
time stamp would not be understood by older libraries, but it
would not render them unable to read the SDS data either

Optional and incompatible features
Optional new features that may render the data unreadable by
older HDF libraries.

For example, a compression attribute could be added. Older
HDF libraries that contain no compression routines would not
be able to read the compressed data.

A tag numbering convention has been developed to address this
problem:

Required tags
These tags are listed in Table 4.3, “Required SDG Tags,” Table
4.5, “Required NDG Tags,” and Table 4.6, “Required SDG-like
NDG Tags.” All SDSs must contain all of the tags in at least
one of these sets. (See Chapter 6, “Tag Specifications,” for the
assigned tag numbers.)

Optional-incompatible tags
Tags for new SDS features that might render the data set
unreadable by older libraries are each assigned a number t that
falls in a special range determined by the constants
DFTAG_EREQ and DFTAG_BREQ.  That is, t must have a
value such that DFTAG_EREQ < t < DFTAG_BREQ.
When old software encounters a tag in this range that it is not
able to interpret, it should not process the group.

Optional-compatible tags
These tags can have any valid tag number not allocated to one
of the other two categories.
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Vsets, Vdatas, and Vgroups

Vsets, Vdatas, and Vgroups enable users to create their own grouping
structures.    Unlike RIGs, SDGs, and NDGs, HDF imposes no
required structure; they are implemented almost entirely at the user level
and are not specified in detail in HDF or in this document.*  The only
specifications define DFTAG_VG, DFTAG_VH, and DFTAG_VS and the
formats of their respective data elements.  A detailed discussion similar
to that for the other grouping structures is, therefore, inappropriate here.
Detailed information regarding the DFTAG_VG, DFTAG_VH, and
DFTAG_VS tags can be found in Chapter 6, “Tag Specifications.”
Conceptual and usage information can be found in the document NCSA
HDF Vset  Version 2.0  for HDF Versions 3.2 and earlier and in the
NCSA HDF User’s Guide and the NCSA HDF Reference Manual for
HDF Version 3.3.

Figure 4.6. Illustration of a Vset

03  04  451.33  43  17  

-3  72  523.21  34  22

45  77  684.19  57  57

45  67  762.93  45  36 

March 15, 1990. Simulation 
with k=10.0, beta=1.22e3. 
Calculate the magnitude ...

vgroup

text

raster images

palette

vdata

3D mesh

An HDF Vset can contain any logical grouping of HDF data objects
within an HDF file. Vsets resemble the UNIX file system in that they
impose a basically hierarchical structure but also allow cross-linked data
objects.  Unlike SDSs and RISs, Vsets have no prespecified content or
structure; users can use them to create structural relationships among
HDF objects according to their needs. Figure 4.6 illustrates a Vset.

A Vset is identified by a Vgroup, an HDF object that contains
information about the members of the Vset. The tag DFTAG_VG
identifies the Vgroup which contains the tag/refs of its members, an

* Specialists in various fields are developing application program interfaces (APIs) that are becoming accepted standard
interfaces within their fields.  Since these APIs are implemented with high level HDF functionality and using the standard
HDF user interface, they are user-level applications from the HDF development team’s point of view.  From the  final
enduser’s point of view, however, these APIs create a new level of user interface.  When necessary, technical specifications
for these APIs and the associated interfaces will be presented by the specialized developers.
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optional user-specified name, an optional user-specified class, and fields
that enable the Vgroup to be extended to contain more information.

The only required Vgroup tag is the tag that defines the Vgroup itself.

Table 4.7 The Vgroup Tag
Tag Contents of Data Element

DFTAG_VG Vgroup

Vgroups are fully described in the document NCSA HDF Vset, Version
2.0  for Versions 3.2 and earlier and in the NCSA HDF User’s Guide
and NCSA HDF Reference Manual for Version 3.3.
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The Raster-8 Set  (Obsolete)

Current HDF versions use the raster image set (RIS) to manage raster
images. But before the RIS was implemented, a simpler, less flexible
set called the raster-8 set was used for storing 8-bit raster images. This
set is no longer supported in the HDF software, although it may turn
up in some older HDF files.*

Raster-8 Sets The raster-8 set is defined by a set of tags that provide the basic
information necessary to store 8-bit raster images and display them
accurately without requiring the user to supply dimensions or color
information. The raster-8 set tags are listed in Table 4.9.

Table 4.9 Raster-8 Set Tags
Tag Contents of Data Element

DFTAG_RI8 8-bit raster image data

DFTAG_CI8 8-bit raster image data compressed with run-length
encoding

DFTAG_II8 IMCOMP compressed image data

DFTAG_ID8 Image dimension record

DFTAG_IP8 Image palette data

Software that does not support DFTAG_CI8 or DFTAG_II8 must
provide appropriate error indicators to higher layers that might expect to
find these tags.

Compatibility Between
Raster-8 and Raster Image
S e t s

To maintain backward compatibility with raster-8 sets, the RIS
interface stores tag/refs for both types of sets. For example, if an image
is stored as part of a raster image set, there is one copy each of the
image dimension data, the image data, and the palette data. But there
were two sets of tag/refs pointing to each data element: one for the RIS
and one for the raster-8 set. The image data, for example, is associated
with the tags DFTAG_RI8 and DFTAG_RI.

Note:  Raster-8 set support
will not be maintained in future
HDF releases.

Note that future HDF releases will phase out support for the raster-8
set. Therefore, new software should not expect to find both raster-8 and
RIS structures supporting 8-bit raster images. Eventually, only RIS
structures will be supported.

* In fact, during the first three years that RIS was used, the HDF software stored raster images in both RIS and raster-8 sets.
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Chapter 5 Annotations

Chapter Overview

This chapter introduces annotations, HDF data objects used to annotate
HDF files and objects.

The tags introduced in this chapter are fully described in Chapter 6,
“Tag Specifications,” and are listed in the table in Appendix A, “Tags
and Extended Tag Labels.”

General Description

It is often useful to attach a text annotation to an HDF file or its
contents and to store that annotation in the same HDF file. HDF
provides this capability through the annotation data object.

The data element of an annotation is a sequence of ASCII characters that
can be associated with any of three types of objects:
• The file itself
• An individual HDF data object in the file
• A tag that identifies a data element
The current annotation interface supports only the first two.

Annotations come in two forms:
Label A short, NULL-terminated string.  Labels may

include no embedded NULLs.
Description A longer and more complex body of text of a

pre-defined length. Descriptions may contain
embedded NULLs.

Annotations are never required; they are used strictly at the discretion of
the creator or user of an HDF file.

Table 5.1 shows the currently defined annotation types and their
assigned tags.

Table 5.1 Annotation Tags

Label Types Description Types

File annotations DFTAG_FID DFTAG_FD

Object annotations DFTAG_DIL DFTAG_DIA

Tag annotations DFTAG_TID DFTAG_TD
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The annotation interface is fully described in the document NCSA HDF
Calling Interfaces and Utilities  for Versions 3.2 and earlier and in the
NCSA HDF User’s Guide and NCSA HDF Reference Manual for
Version 3.3

File Annotations

Any HDF file can include label annotations (DFTAG_FID) and/or
description annotations (DFTAG_FD). The file annotation interface
routines provided in the HDF software read and write file labels and file
descriptions.

Object Annotations

HDF data object annotation is complicated by the fact that you must
uniquely identify the object being annotated. Since a tag/ref uniquely
identifies a data object, the data object that a particular annotation refers
to can be identified by storing the object's tag and reference number
with the annotation.

Note that an HDF annotation is itself a data object, so it has its own
DD. This DD has a tag/ref that points to the data element containing
the annotation. The annotation data element contains the following
information:
• The tag of the annotated object
• The reference number of the annotated object
• The annotation itself

For example, suppose you have an HDF file that contains  three
scientific data sets (SDSs). Each SDS has its own DD consisting of the
SDS tag DFTAG_SDG and a unique reference number, as illustrated in
Figure 5.1.

Figure 5.1 Three SDS Tag/refs

DFTAG_NDG

DFTAG_NDG

DFTAG_NDG

2

4

9

Tag Ref

Suppose you wish to attach the following annotation to the second
SDS: “Data from black hole experiment 8/18/87.” This text will be
stored in a description annotation data object. The data element will
include the tag/ref, DFTAG_NDG/4, and the annotation itself. Figure 5.2
illustrates the annotation data object.

Figure 5.2 Sample Annotation Data Object
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DFTAG_NDG     4     Data from black hole experiment 8/18/87

DFTAG_DIA     2

Annotation DD

Tag Ref Description

Getting Reference
Numbers for Object
Annotations

To use annotation routines, you need to know the tags and reference
numbers of the objects you wish to annotate.

The following routines return the most recent reference number used in
either reading or writing the specified type of data object:

DFSDlastref SDS data objects

DFR8lastref RIS data objects

DFPlastref Palettes

DFANlastref Annotations

Reference numbers for other objects can be obtained with the routine
Hfindnextref, a general purpose HDF routine that searches an HDF
file sequentially for reference numbers associated with a given tag.

These routines are described in the document NCSA HDF Calling
Interfaces and Utilities  for Versions 3.2 and earlier and in the NCSA
HDF User’s Guide and NCSA HDF Reference Manual for Version 3.3.
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Chapter 6 Tag Specifications

Chapter Overview

This chapter addresses issues related to HDF tags and the data they
represent. The first section provides general information about tags and
their interpretation. The remainder of the chapter contains a complete
list of tags supported by NCSA HDF Version 3.3 and detailed tag
specifications.

The HDF Tag Space

As discussed in Chapter 1, "The Basic Structure of HDF Files," 16 bits
are allotted for an HDF tag number.  This provides for 65535 possible
tags, ranging from 1 to 65535; zero (0) is not used. This tag space is
divided into three ranges:

1 – 32767 Reserved for NCSA-supported tags
32768 – 64999 Set aside as user-definable tags
65000 – 65535 Reserved for expansion of the format

No restrictions are placed on the user-definable tags. Note that tags from
this range are not expected to be unique across user-developed HDF
applications.

The rest of this chapter is devoted to the NCSA-supported tags in the
range 1 to 32767.

Extended Tags and Alternate Physical Storage Methods

Prior to HDF Version 3.2, each data element had to be stored in one
contiguous block in the basic HDF file. Version 3.2 introduced
extended tags, a mechanism supporting alternate physical data element
storage structures.  All NCSA-supported tags with variable-sized data
elements can take advantage of the extended tag features.

Extended Tag
Implementation

Extended tags are automatically recognized by current versions of the
HDF library and interpreted according to a description record. The
description record, a complete data element, identifies the type of
extended element and provides the relevant parameters for data retrieval.

Extended tags currently support two styles of alternate physical storage:

Linked block elements are stored in several non-contiguous blocks
within the basic HDF file.
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External elements are stored in a separate file, external to the basic
HDF file.

Every NCSA-supported tag is represented in HDF libraries and files by
a tag number.  NCSA-supported tags that take advantage of alternative
physical storage features have an alternative tag number, called an
extended tag number, that appears instead of the original tag number
when an alternative physical storage method is in use.

When NCSA determines that an extended tag should be defined for a
given tag, the extended tag number is determined by performing an
arithmetic OR with the original tag number and the hexadecimal
number 0x4000.  For example, the tag DFTAG_RI points to a data
element containing a raster image.  If the data element is stored
contiguously in the same HDF file, the DD contains the tag number
302; if the data element is stored either in linked blocks or in an
external file, the DD contains the extended tag number 16384.

If a data object uses a regular tag number, its storage structure will be
exactly as described in the “Tag Specifications” section of this chapter.
Figure 6.1 illustrates this general structure with the DD pointing
directly to a single, contiguous data block.

Figure 6.1 Regular Data Object
regular_tag ref_no

data_element

regular_tag Tag number

ref_no Reference number

data_element The data element

If a data object uses an extended tag, the storage structure will appear
generally as illustrated in Figure 6.2.  The DD will point to an extended
tag description record which in turn will point to the data.

Figure 6.2 Data Object with
Extended Tag extended_tag ref_no

ext_tag_desc data_location_information

data  (in linked blocks or external file)

extended_tag Extended tag number

ref_no Reference number

ext_tag_desc A 32-bit constant defined in Hdfi.h that identifies
the type of alternative storage involved.  Current
definitions include EXT_LINKED for linked block
elements or EXT_EXTERN for external elements.
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data_location_information
Information identifying and describing the linked
blocks or external file

data The data, stored either in linked blocks or in an
external file

Since the HDF tools were modified for HDF Version 3.2 to handle
extended tags automatically, the only thing the user ever has to do is
specify the use of either the linked blocks mechanism or an external
file.  Once that has been specified, the user can forget about extended
tags entirely; the HDF library will manage everything correctly.

There is only one circumstance under which an HDF user will need to
be concerned with the difference between regular tag numbers and
extended tag numbers.  If a user bypasses the regular HDF interface to
examine a raw HDF file, that user will have to know the extended tag
numbers, their significance, and the alternative storage structures.

Linked Block Elements As mentioned above, data elements had to be stored as single
contiguous blocks within the basic HDF file prior to HDF Version 3.2.
This meant that if a data element grew larger than the allotted space, the
file had to be erased from its current location and rewritten at the end of
the file.

Linked blocks provide a convenient means of addressing this problem
by linking new data blocks to a pre-existing data element. Linked block
elements consist of a series of data blocks chained together in a linked
list (similar to the DD list). The data blocks must be of uniform size,
except for the first block, which is considered a special case.

The linked block data element is a description record beginning with the
constant EXT_LINKED, which identifies the linked block storage method.
The rest of the record describes the organization of the data element
stored as linked blocks. Figure 6.3 illustrates a linked block description
record.

Figure 6.3 Linked Block
Description Record extended_tag ref_no

EXT_LINKED first_len length

blk_len num_blk link_ref

extended_tag The extended tag counterpart of any NCSA standard
tag (16-bit integer)

ref_no Reference number (16-bit integer)

EXT_LINKED Constant identifying this as a linked block
description record (32-bit integer)

length Length of entire element (32-bit integer)

first_len Length of the first data block (32-bit integer)

blk_len Length of successive data blocks (32-bit integer)

num_blk Number of blocks per block table (32-bit integer)
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link_ref Reference number of first block table (16-bit integer)

The link_ref field of the description record gives the reference
number of the first linked block table for the element. This table is
identified by the tag/ref DFTAG_LINKED/link_ref  and contains
num_blk entries. There may be any number of linked block tables
chained together to describe a linked block element. Figure 6.4
illustrates a linked block table.

Figure 6.4 A Linked Block Table

next_ref blk_ref_2blk_ref_1

DFTAG_LINKED link_ref

link_ref Reference number for this table (16-bit integer)

next_ref Reference number for next table (16-bit integer)

blk_ref_n Reference number for data block (16-bit integer)

The next_ref field contains the reference number of the next linked
block table. A value of zero (0) in this field indicates that there are no
additional linked block tables associated with this element.

The blk_ref_n fields of each linked block table contain reference
numbers for the individual data blocks that make up the data portion of
the linked block element. These data blocks are identified by the tag/ref
DFTAG_LINKED/blk_ref_n as illustrated in Figure 6.5. Although it
may seem ambiguous to use the same tag to refer to two different
objects, this ambiguity is resolved by the context in which the tags
appear.

Figure 6.5 A Data Block
DFTAG_LINKED blk_ref_n

data_block

blk_ref_n Reference number for this data block (16-bit integer)

data_block Block of actual data (size specified by first_len  or
blk_len in the description record)

Linked block elements can be created using the function HLcreate(),
which is discussed in Chapter 3, “The HDF General Purpose Interface.”

External Elements External elements allow the data portion of an HDF element to reside in
a separate file. The potential of external data elements is largely
unexplored in the HDF context, although other file formats (most
notably the Common Data Format, CDF, from NASA) have used
external data elements to great advantage.

Because there has been little discussion of external elements within the
HDF user community, the structure of these elements is still not
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completely defined. Figure 6.6 shows a diagram of the suggested
structure for an external element.

Figure 6.6 External Element
Description Record extended_tag ref_no

EXT_EXTERN offset length filename

extended_tag The extended tag counterpart of any NCSA standard
tag (16-bit integer)

ref_no Reference number (16-bit integer)

EXT_EXTERN Constant identifying this as an external element
description record (16-bit integer)

offset Location of the data within the external file (32-bit
integer)

length Length in bytes of the data in the external file (32-
bit integer)

filename Non-null terminated ASCII string naming the
external file (any length)

An external element description record begins with the constant
EXT_EXTERN, which identifies the data object as having an externally
stored data element. The rest of the description record consists of the
specific information required to retrieve the data.

External elements can be created using the function HXcreate(), which
is discussed in Chapter 3, “The HDF General Purpose Interface.”
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Tag Specifications

The following pages contain the specifications of all the NCSA-
supported tags in HDF Version 3.3. Each entry contains the following
information:

• The tag (in capital letters in the left margin)

• The full name of the tag (on the first line to the right)

• The type and, where possible, the amount of data in the
corresponding data element (on the second line to the right)

When the data element is a variable-sized data structure—such as
text, a string, or a variable-sized array—the amount of data cannot
be specified exactly. Where possible, a formula is provided to
estimate the amount of data. The string ? bytes appears when
neither the size nor the structure of the data element can be specified.

• The tag number in decimal/(hexadecimal) (on the third line to the
right)

• A diagram illustrating the structure of the tag and its associated data

Since all DDs that point to a data element contain data length and
data offset fields, these fields are not included in the illustrations.

• A full specification of the tag, including a description of the data
element and a discussion of its intended use.

Tags are roughly grouped according to the roles they play:
• Utility tags
• Annotation tags
• Compression tags
• Raster Image tags
• Composite image tags
• Vector image tags
• Scientific data set tags
• Vset tags
• Obsolete tags

These groupings imply a general context for the use of each tag; they
are not meant to restrict their use.

Please note the subsection “Obsolete Tags.”  These tags have fallen out
of use with the continuing development of HDF. They are still
recognized by the HDF library, but users should not write new objects
using them; they may eventually be dropped from the HDF
specification.

In the following discussion, the ground symbol indicates that the DD
for this tag includes no pointer to a data element.  I.e., there is never a
data element associated with the tag.

This symbol indicates that 
there is no data element 
associated with the tag.
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Utility Tags

DFTAG_NULL No data
0 bytes
1  (0x0001)

ref_noDFTAG_NULL

ref_no Reference number (16-bit integer; always 0)

This tag is used for place holding and to fill empty portions of the data
description block. The length and offset fields (not shown) of a
DFTAG_NULL DD must be zero (0).

DFTAG_VERSION Library version number
12 bytes plus the length of a string
30  (0x001E)

ref_noDFTAG_VERSION

stringmajorv minorv release

ref_no Reference number (16-bit integer)

majorv Major version number (32-bit integer)

minorv Minor version number (32-bit integer)

release Release number (32-bit integer)

string Non-null terminated ASCII string (any length)

The data portion of this tag contains the complete version number and a
descriptive string for the latest version of the HDF library to write to
the file.
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DFTAG_NT Number type
4 bytes
106  (0x006A)

ref_noDFTAG_NT

version type width class

ref_no Reference number (16-bit integer)

version Version number of NT information (8-bit integer)

type Unsigned integer, signed integer, unsigned character,
character, floating point, double precision floating point (8-
bit code)

width Number of bits, all of which are assumed to be significant
(8-bit code)

class A generic value, with different interpretations depending on
type:  floating point, integer, or character (8-bit code)

Several values that may be used for each of the three types in the field
CLASS are listed in Table 6.1. This is not an exhaustive list.

Table 6.1 Number Type Values

Type Mnemonic Value

Floating point DFNTF_NONE 0

DFNTF_IEEE 1

DFNTF_VAX 2

DFNTF_CRAY 3

DFNTF_PC 4

DFNTF_CONVEX 5

Integer DFNTI_MBO 1

DFNTI_IBO 2

DFNTI_VBO 4

Character DFNTC_ASCII 1

DFNTC_EBCDOC 2

DFNTC_BYTE 0

The number type flag is used by any other element in the file to
indicate specifically what a numeric value looks like. Other tag types
should contain a reference number pointer to an DFTAG_NT instead of
containing their own number type definitions.

The version field allows expansion of the number type information, in
case some future number types cannot be described using the fields
currently defined. Successive versions of the DFTAG_NT may be
substantially different from the current definition, but backward
compatibility will be maintained. The current DFTAG_NT version
number is 1.
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DFTAG_MT Machine type
0 bytes
107  (0x006B)

DFTAG_MT float int chardouble

double Specifies method of encoding double precision floating point
(4-bit code)

float Specifies method of encoding single precision floating point
(4-bit code)

int Specifies method of encoding integers (4-bit code)

char Specifies method of encoding characters (4-bit code)

DFTAG_MT specifies that all unconstrained or partially constrained values
in this HDF file are of the default type for that hardware. When
DFTAG_MT is set to VAX, for example, all integers will be assumed to be
in VAX byte order unless specifically defined otherwise with a
DFTAG_NT tag. Note that all of the headers and many tags, the whole
raster image set for example, are defined with bit-wise precision and
will not be overridden by the DFTAG_MT setting.

For DFTAG_MT, the reference field itself is the encoding of the DFTAG_MT
information. The reference field is 16 bits, taken as four groups of four
bits, specifying the types for double-precision floating point, floating
point, integer, and character respectively. This allows 16 generic
specifications for each type.

To the user, these will be defined constants in the header file hdf.h,
specifying the proper descriptive numbers for Sun, VAX, Cray,
Convex, and other computer systems. If there is no DFTAG_MT in a file,
the application may assume that the data in the file has been written on
the local machine; any portability problems must be addressed by the
user. For this reason, we recommend that all HDF files contain a
DFTAG_MT for maximum portability.
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Currently available data encodings are listed in Table 6.2.

Table 6.2 Available Machine Types

Type Available Encodings

Double precision floating
point

IEEE64

VAX64

CRAY128

Floating point IEEE32

VAX32

CRAY64

Integers VAX32

Intel16

Intel32

Motorola32

CRAY64

Characters ASCII

EBCDIC

New encodings can be added for each data type as the need arises.



Tag Specifications

April 12, 1996 6-11

Annotation Tags

DFTAG_FID File identifier
String
100  (0x0064)

DFTAG_FID ref_no

character_string

ref_no Reference number (16-bit integer)

character_string Non-null terminated ASCII text (any length)

This tag points to a string which the user wants to associate with this
file. The string is not null terminated. The string is intended to be a
user-supplied title for the file.

DFTAG_FD File description
Text
101  (0x0065)

ref_noDFTAG_FD

text_block

ref_no Reference number (16-bit integer)

text_block Non-null terminated ASCII text (any length)

This tag points to a block of text describing the overall file contents.
The text can be any length. The block is not null terminated. The text
is intended to be user-supplied comments about the file.

DFTAG_TID Tag identifier
String
102  (0x0066)

character_string

DFTAG_TID tag

tag Tag number to which this tag refers (16-bit integer)

character_string
Non-null terminated ASCII text (any length)

The data for this tag is a string that identifies the functionality of the
tag indicated in the space normally used for the reference number. For
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example, the tag identifier for DFTAG_TID might point to data that reads
"tag identifier."

Many tags are identified in the HDF specification, so it is usually
unnecessary to include their identifiers in the HDF file. But with user-
defined tags or special-purpose tags, the only way for a human reader to
diagnose what kind of data is stored in a file is to read tag identifiers.
Use tag descriptions to define even more detail about your user-defined
tags.

Note that with this tag you may make use of the user-defined tags to
check for consistency. Although two persons may use the same user-
defined tag, they probably will not use the same tag identifier.

DFTAG_TD Tag description
Text
103  (0x0067)

tagDFTAG_TD

text_block

tag Tag number to which this tag refers (16-bit integer)

text_block Non-null terminated ASCII text (any length)

The data for this tag is a text block which describes in relative detail the
functionality and format of the tag which is indicated in the space
normally occupied by the reference number. This tag is intended to be
used with user-defined tags and provides a medium for users to exchange
files that include human-readable descriptions of the data.

It is important to provide everything that a programmer might need to
know to read the data from your user-defined tag. At the minimum, you
should specify everything you would need to know in order to retrieve
your data at a later date if the original program were lost.
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DFTAG_DIL Data identifier label
String
104  (0x0068)

ref_no

character_stringobj_tag obj_ref_no

DFTAG_DIL

ref_no Reference number (16-bit integer)

obj_tag Tag number of the data to which this label applies (16-
bit integer)

obj_ref_no Reference number of the data object to which this label
applies (16-bit integer)

character_string
Non-null terminated ASCII text (any length)

The DFTAG_DIL data object consists of a tag/ref followed by a string.
The string serves as a label for the data identified by the tag/ref.

By including DFTAG_DIL tags, you can give a data object a label for
future reference. For example, DFTAG_DIL can be used to assign titles to
images.

DFTAG_DIA Data identifier annotation
Text
105  (0x0069)

ref_no

text_blockobj_tag obj_ref_no

DFTAG_DIA

ref_no Reference number (16-bit integer)

obj_tag Tag number of the data to which this annotation applies
(16-bit integer)

obj_ref_no Reference number of the data object to which this
annotation applies (16-bit integer)

text_block Non-null terminated ASCII text (any length)

The DFTAG_DIA data object consists of a tag/ref followed by a text
block. The text block serves as an annotation of the data identified by
the tag/ref.

With a DFTAG_DIA tag, any data object can have a lengthy, user-written
description. This can be used to include comments about images, data
sets, source code, and so forth.
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Compression Tags

DFTAG_RLE Run length encoded data
0 bytes
11  (0x000B)

ref_noDFTAG_RLE

ref_no Reference number (16-bit integer)

This tag is used in the DFTAG_ID compression field and in other places
to indicate that an image or section of data is encoded with a run-length
encoding scheme. The RLE method used is byte-wise. Each run is
preceded by a count byte. The low seven bits of the count byte indicate
the number of bytes (n). The high bit of the count byte indicates
whether the next byte should be replicated n times (high bit = 1), or
whether the next n bytes should be included as is (high bit = 0).

See also: DFTAG_ID in “Raster Image Tags”
DFTAG_NDG in “Scientific Data Set Tags”

DFTAG_IMC IMCOMP compressed data
0 bytes
12  (0x000C)

ref_noDFTAG_IMC

ref_no Reference number (16-bit integer)

This tag is used in the DFTAG_ID compression field and in other places
to indicate that an image or section of data is encoded with an
IMCOMP encoding scheme. This scheme is a 4:1 aerial averaging
method which is easy to decompress. It counts color frequencies in 4x4
squares to optimize color sampling.

See also: DFTAG_ID in “Raster Image Tags”
DFTAG_NDG in “Scientific Data Set Tags”
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DFTAG_JPEG 24-bit JPEG compression information
? bytes
13  (0x000D)

ref_noDFTAG_JPEG

JFIF header

ref_no Reference number (16-bit integer)

This tag points to header information for 24-bit JPEG compressed
images.  The data in this tag is identical to the header data stored in a
JFIF (JPEG File Interchange Format) file up to the start-of-frame
parameter. The start-of-frame parameter and all further data for the JPEG
image is stored in the associated DFTAG_CI data element which is the
companion to the DFTAG_JPEG element.  (See the document JPEG File
Interchange Format* for a detailed description of the file format.)

DFTAG_GREYJPEG 8-bit JPEG compression information
? bytes
14  (0x000E)

ref_noDFTAG_GREYJPEG

JFIF header

ref_no Reference number (16-bit integer)

This tag points to header information for 8-bit JPEG compressed
images.  The data in this tag is identical to the header data stored in a
JFIF (JPEG File Interchange Format) file up to the start-of-frame
parameter (see the JFIF format document for further details).  The start-
of-frame parameter and all further data for the JPEG image is stored in
the associated DFTAG_CI data element which is the companion to the
DFTAG_JPEG element.

* The document JPEG File Interchange Format has not been published in a regular periodical.  An electronic copy is available
as a Postscript file from NCSA’s FTP server ftp.ncsa.uiuc.edu in the same directory as this document, NCSA
HDF Specification and Developer’s Guide.  Printed copies are available from C-Cube Microsystems, 1778 McCarthy
Boulevard, Milpitas, CA  95035 (phone: 408-944-6300.  Fax: 408-944-6314.  Current email contact:
eric@c3.pla.ca.us).
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DFTAG_CI Compressed raster image
? bytes
303  (0x012F

DFTAG_CI ref_no

ref_no Reference number (16-bit integer)

This tag points to a stream of bytes that make up a compressed image.
The type of compression, together with any necessary parameters, are
stored as a separate data object.  For example, if DFTAG_JPEG is
contained in the same raster image group, the stream of bytes contains
the sratt-of-frame parameter and all further data for the JPEG image.
Other parameters are stored in the DFTAG_JPEG object.
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Raster Image Tags

DFTAG_RIG Raster image group
n*4 bytes (where n is the number of data objects in the group)
306  (0x0132)

DFTAG_RIG ref_no

tag_1 ref_1 tag_2 ref_2

ref_no Reference number (16-bit integer)

tag_n Tag number for nth member of the group (16-bit integer)

ref_n Reference number for nth member of the group (16-bit
integer)

The RIG data element contains the tag/refs of all the data objects
required to display a raster image correctly. Application programs that
deal with RIGs should read all the elements of a RIG and process those
identifiers which it can display correctly. Even if the application cannot
process all of the objects, the objects that it can process will be usable.

Table 6.3 lists the tags that may appear in an RIG.

Table 6.3 Available RIG Tags

Tag Description

DFTAG_ID Image dimension record
DFTAG_RI Raster image
DFTAG_XYP X-Y position
DFTAG_LD LUT dimension
DFTAG_LUT Color lookup table
DFTAG_MD Matte channel dimension
DFTAG_MA Matte channel
DFTAG_CCN Color correction
DFTAG_CFM Color format
DFTAG_AR Aspect ratio

Example
DFTAG_ID, DFTAG_RI, DFTAG_LD, DFTAG_LUT
Assume that an image dimension record, a raster image, an LUT
dimension record, and an LUT are all required to display a particular
raster image correctly. These data objects can be associated in an RIG so
that an application can read the image dimensions then the image. It
will then read the lookup table and display the image.

DFTAG_ID
DFTAG_LD
DFTAG_MD

DFTAG_ID
Image dimension
20 bytes
300  (0x012C)

DFTAG_LD
LUT dimension
20 bytes
307  (0x0133)

DFTAG_MD
Matte dimension
20 bytes
308  (0x0134)
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DFTAG_ID ref_no

x_dim y_dim DFTAG_NT NT_ref

elements interlace comp_tag comp_ref

ref_no Reference number (16-bit integer)

x_dim Length of x (horizontal) dimension (32-bit integer)

y_dim Length of y (vertical) dimension (32-bit integer)

NT_ref Reference number for number type information

elements Number of elements that make up one entry (16-bit
integer)

interlace Type of interlacing used (16-bit integer)
0 The components of each pixel are together.
1 Color elements are grouped by scan lines.
2 Color elements are grouped by planes.

comp_tag Tag which tells the type of compression used and any
associated parameters (16-bit integer)

comp_ref Reference number of compression tag (16-bit integer)

These three dimension records have exactly the same format; they
specify the dimensions of the 2-dimensional arrays after which they are
named and provide information regarding other attributes of the data in
the array:

DFTAG_ID specifies the dimensions of a DFTAG_RI.
DFTAG_LD specifies the dimensions of a DFTAG_LUT.
DFTAG_MD specifies the dimensions of a DFTAG_MA.

Other attributes described in the image dimension record include the
number type of the elements, the number of elements per pixel, the
interlace scheme used, and the compression scheme used (if any).

For example, a 512x256 row-wise 24-bit raster image with each pixel
stored as RGB bytes would have the following values:

x_dim 512
y_dim 256
NT_ref UINT8
elements 3 (3 elements per pixel: e.g., R, G, and B)
interlace 0 (RGB values not separated)
comp_tag 0 (no compression is used)

The diagram above illustrates the tag DFTAG_ID.  The DFTAG_LD and
DFTAG_MD diagrams would be identical except for the tag name in the
fist cell, whch would be DFTAG_LD and DFTAG_MD, respectively.
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DFTAG_RI Raster image
xdim*ydim*elements*NTsize bytes (xdim, ydim, elements, and NTsize

are specified in the corresponding DFTAG_ID)
302  (0x012E)

DFTAG_RI ref_no

ref_no Reference number (16-bit integer)

This tag points to raster image data. It is stored in row-major order and
must be interpreted as specified by interlace in the related
DFTAG_ID.

DFTAG_LUT Lookup table
xdim*ydim*elements*NTsize bytes (xdim, ydim, elements, and NTsize

are specified in the corresponding DFTAG_ID)
301  (0x012D)

P0_0 P0_1 P0_m

Pn_m

P1_0 P1_1 P1_m

Pn_0 Pn_1

DFTAG_LUT ref_no

OR

P0_0

P0_1

P0_m Pn_m

P1_0

P1_1

P1_m

Pn_0

Pn_1

ref_no Reference number (16-bit integer)

Pn_m mth value of parameter n (size is specified by the DFTAG_NT
in the corresponding DFTAG_LD)

The DFTAG_LUT, sometimes called a palette, is used to assign colors to
data values. When a raster image consists of data values which are
going to be interpreted through an LUT capability, the DFTAG_LUT
should be loaded along with the image.

The most common lookup table is the RGB lookup table which will
have X dimension = 256 and Y dimension = 1 with three elements per
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entry, one each for red, green, and blue. The interlace will be either 0,
where the LUT values are given RGB, RGB, RGB, ..., or 1, where the
LUT values are given as 256 reds, 256 greens, 256 blues.

DFTAG_MA Matte channel
xdim*ydim*elements*NTsize bytes (xdim, ydim, elements, and NTsize

are specified in the corresponding DFTAG_ID)
309  (0x0135)

DFTAG_MA ref_no

ref_no Reference number (16-bit integer)

The DFTAG_MA data object contains transparency data which can be used
to facilitate the overlaying of images. The data consists of a 2-
dimensional array of unsigned 8-bit integers ranging from 0 to 255.
Each point in a DFTAG_MA indicates the transparency of the
corresponding point in a raster image of the same dimensions. A value
of 0 indicates that the data at that point is to be considered totally
transparent, while a value of 255 indicates that the data at that point is
totally opaque. It is assumed that a linear scale applies to the
transparency values, but users may opt to interpret the data in any way
they wish.
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DFTAG_CCN Color correction
52 bytes (usually)
310  (0x0136)

DFTAG_CCN ref_no

gamma red_x red_y red_z

green_x green_y green_z

blue_x blue_y blue_z

white_x white_y white_z

ref_no Reference number (16-bit integer)

gamma Gamma parameter (32-bit IEEE floating point)

red_x, red_y, and red_z
Red x, y, and z correction factors (32-bit IEEE floating
point)

green_x, green_y, and green_z
Green x, y, and z correction factors (32-bit IEEE floating
point)

blue_x, blue_y, and blue_z
Blue x, y, and z correction factors (32-bit IEEE floating
point)

white_x, white_y, and white_z
White x, y, and z correction factors (32-bit IEEE floating
point)

Color correction specifies the Gamma correction for the image and color
primaries for the generation of the image.
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DFTAG_CFM Color format
String
311  (0x0137)

DFTAG_CFM ref_no

character_string

ref_no Reference number (16-bit integer)

character_string Non-null terminated ASCII string (any length)

The color format data element contains a string of uppercase characters
that indicates how each element of each pixel in a raster image is to be
interpreted. Table 6.4 lists the available color format strings.

Table 6.4 Color Format String Values

String Description

VALUE Pseudo-color, or just a value associated with
the pixel

RGB Red, green, blue model
XYZ Color-space model
HSV Hue, saturation, value model
HSI Hue, saturation, intensity
SPECTRAL Spectral sampling method

DFTAG_AR Aspect ratio
4 bytes
312  (0x0138)

DFTAG_AR ref_no

ratio

ref_no Reference number (16-bit integer)

ratio Ratio of width to height (32-bit IEEE float)

The data for this tag is the visual aspect ratio for this image. The image
should be visually correct if displayed on a screen with this aspect ratio.
The data consists of one floating-point number which represents width
divided by height. An aspect ratio of 1.0 indicates a display with
perfectly square pixels; 1.33 is a standard aspect ratio used by many
monitors.
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Composite Image Tags

DFTAG_DRAW Draw
n*4 bytes (where n is the number of data objects that make up the

composite image)
400  (0x0190)

DFTAG_DRAW ref_no

tag_1 ref_1 tag_2 ref_2

ref_no Reference number (16-bit integer)

tag_n Tag number of the nth member of the draw list (16-bit
integer)

ref_n Reference number of the nth member of the draw list (16-bit
integer)

The DFTAG_DRAW data element consists of a list of tag/refs that define a
composite image. The data objects indicated should be displayed in
order. This can include several RIGs which are to be displayed
simultaneously. It can also include vector overlays, like DFTAG_T14,
which are to be placed on top of an RIG.

Some of the elements in a DFTAG_DRAW list may be instructions about
how images are to be composited (XOR, source put, anti-aliasing, etc.).
These are defined as individual tags.
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DFTAG_XYP XY position
8 bytes
500  (0x01F4)

DFTAG_XYP ref_no

x y

ref_no Reference number (16-bit integer)

x X-coordinate (32-bit integer)

y Y-coordinate (32-bit integer)

DFTAG_XYP is used in composites and other groups to indicate an XY
position on the screen. For this, (0,0) is the lower left corner of the
print area. X is the number of pixels to the right along the horizontal
axis and Y is the number of pixels up on the vertical axis. The X and Y
coordinates are two 32-bit integers.

For example, if DFTAG_XYP is present in a DFTAG_RIG, the DFTAG_XYP
specifies the position of the lower left corner of the raster image on the
screen.

See also: DFTAG_DRAW in this section
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Vector Image Tags

DFTAG_T14 Tektronix 4014
? bytes
602  (0x25A)

DFTAG_T14 ref_no

ref_no Reference number (16-bit integer)

This tag points to a Tektronix 4014 data stream. The bytes in the data
field, when read and sent to a Tektronix 4014 terminal, will display a
vector image. Only the lower seven bits of each byte are significant.
There are no record markings or non-Tektronix codes in the data.

DFTAG_T105 Tektronix 4105
? bytes
603  (0x25B)

DFTAG_T105 ref_no

ref_no Reference number (16-bit integer)

This tag points to a Tektronix 4105 data stream. The bytes in the data
field, when read and sent to a Tektronix 4105 terminal, will be
displayed as a vector image. Only the lower seven bits of each byte are
significant. Some terminal emulators will not correctly interpret every
feature of the Tektronix 4105 terminal, so you may wish to use only a
subset of the available Tektronix 4105 vector commands.
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Scientific Data Set Tags

DFTAG_NDG Numeric data group
n*4 bytes (where n is the number of data objects in the group.)
720  (0x02D0)

DFTAG_NDG ref_no

tag_1 ref_1 tag_2 ref_2

ref_no Reference number (16-bit integer)

tag_n Tag number of nth member of the group (16-bit integer)

ref_n Reference number of nth member of the group
(16-bit integer)

The NDG data contains a list of tag/refs that define a scientific data set.
DFTAG_NDG supersedes the old DFTAG_SDG, which became obsolete
upon the release on HDF Version 3.2. A more complete explanation of
the relationship between DFTAG_NDG and DFTAG_SDG can be found in
Chapter 4, “Sets and Groups.”

All of the members of an NDG provide information for correctly
interpreting and displaying the data. Application programs that deal
with NDGs should read all of the elements of a NDG and process those
data objects which it can use. Even if an application cannot process all
of the objects, the objects that it can understand will be usable.

Table 6.5 lists the tags that may appear in an NDG.

Table 6.5 Available NDG Tags

Tag Description

DFTAG_SDD Scientific data dimension record (rank and
dimensions)

DFTAG_SD Scientific data
DFTAG_SDS Scales
DFTAG_SDL Labels
DFTAG_SDU Units
DFTAG_SDF Formats
DFTAG_SDM Maximum and minimum values
DFTAG_SDC Coordinate system
DFTAG_CAL Calibration information
DFTAG_FV Fill value
DFTAG_LUT Color lookup table
DFTAG_LD Lookup table dimension record
DFTAG_SDLNK Link to old-style DFTAG_SDG

Example
DFTAG_SDD, DFTAG_SD, DFTAG_SDM
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Suppose that an NDG contains a dimension record, scientific data, and
the maximum and minimum values of the data. These data objects can
be associated in an NDG so that an application can read the rank and
dimensions from the dimension record and then read the data array. If the
application needs maximum and minimum values, it will read them as
well.

See also: Chapter 4, “Sets and Groups”

DFTAG_SDD Scientific data dimension record
6 + 8*rank bytes
701  (0x02BD)

DFTAG_SDD ref_no

rank dim_1 dim_2 dim_n

scale_NT_ref_2DFTAG_NT

scale_NT_ref_nDFTAG_NT

scale_NT_ref_1DFTAG_NT

data_NT_refDFTAG_NT

ref_no Reference number (16-bit integer)

rank Number of dimensions (16-bit integer)

dim_n Number of values along the nth dimension (32-bit
integer)

data_NT_ref Reference number of DFTAG_NT for data
(16-bit integer)

scale_NT_ref_n Reference number for DFTAG_NT for the scale for
the nth dimension (16-bit integer)

This record defines the rank and dimensions of the array in the scientific
data set. For example, a DFTAG_SDD for a 500x600x3 array of floating-
point numbers would have the following values and components.

Rank:  3
Dimensions:  500, 600, and 3.
One data NT
Three scale NTs
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DFTAG_SD Scientific data
NTsize*x*y*z*... bytes (where NTsize is the size of the data NT

specified in the corresponding DFTAG_SDD and x, y, z, etc. are the
dimension sizes)

702  (0x02BE)

2.1   2.9   8.7  ...  6.4
                  7.7
                  8.3

                  6.1

1.1   2.5   9.8  ...  6.7
                  7.2
                  8.6

                  6.4

DFTAG_SD ref_no

1.2   3.6   8.4  ...  9.1
2.4   2.8   6.3  ...  7.5
1.7   2.0   5.3  ...  8.2
 .     .     .         .
 .     .     .         .
4.3   3.6   7.1  ...  6.2

ref_no Reference number (16-bit integer)

This tag points to an array of scientific data. The type of the data may
be specified by an DFTAG_NT included with the SDG. If there is no
DFTAG_NT, the type of the data is floating-point in standard IEEE 32-bit
format. The rank and dimensions must be stored as specified in the
corresponding DFTAG_SDD. The diagram above shows a 3-dimensional
data array.

DFTAG_SDS Scientific data scales
rank + NTsize0*x + NTsize1*y +NTsize2*z +... bytes (where rank is

the number of dimensions, x, y, z, etc. are the dimension sizes, and
NTsize# are the sizes of each scale NT from the corresponding
DFTAG_SDD)

703  (0x02BF)

DFTAG_SDS ref_no

is_1

scale_1

is_2 is_3 is_n

scale_2 scale_3 scale_n

ref_no Reference number (16-bit integer)

is_n A flag indicating whether a scale exists for the nth

dimension (8-bit integer; 0 or 1)

scale_n List of scale values for the nth dimension (type specified
in corresponding DFTAG_SDD)

This tag points to the scales for the data set. The first n bytes indicate
whether there is a scale for the corresponding dimension (1 = yes, 0 =
no). This is followed by the scale values for each dimension. The scale
consists of a simple series of values where the number of values and
their types are specified in the corresponding DFTAG_SDD.
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DFTAG_SDL Scientific data labels
? bytes
704  (0x02C0)

DFTAG_SDL ref_no

label_1 label_2 label_n

ref_no Reference number (16-bit integer)

label_n Null terminated ASCII string (any length)

This tag points to a list of labels for the data in each dimension of the
data set. Each label is a string terminated by a null byte (0).

DFTAG_SDU Scientific data units
? bytes
705  (0x02C1)

DFTAG_SDU ref_no

unit_1 unit_2 unit_n

ref_no Reference number (16-bit integer)

unit_n Null terminated ASCII string (any length)

This tag points to a list of strings specifying the units for the data and
each dimension of the data set. Each unit's string is terminated by a null
byte (0).

DFTAG_SDF Scientific data format
? bytes
706  (0x02C2)

DFTAG_SDF ref_no

format_1 format_2 format_n

ref_no Reference number (16-bit integer)

format_n Null terminated ASCII string (any length)

This tag points to a list of strings specifying an output format for the
data and each dimension of the data set. Each format string is terminated
by a null byte (0).
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DFTAG_SDM Scientific data max/min
8 bytes
707  (0x02C3)

DFTAG_SDM ref_no

max min

ref_no Reference number (16-bit integer)

max Maximum value (type is specified by the data NT in the
corresponding DFTAG_SDD)

min Minimum value (type is specified by the data NT in the
corresponding DFTAG_SDD)

This record contains the maximum and minimum data values in the data
set. The type of max and min are specified by the data NT of the
corresponding DFTAG_SDD.

DFTAG_SDC Scientific data coordinates
? bytes
708  (0x02C4)

DFTAG_SDC ref_no

string

ref_no Reference number (16-bit integer)

string Null terminated ASCII string (any length)

This tag points to a string specifying the coordinate system for the data
set. The string is terminated by a null byte.
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DFTAG_SDLNK Scientific data set link
8 bytes
710  (0x02C6)

DFTAG_SDLNK ref_no

DFTAG_NDG DFTAG_SDGNDG_ref SDG_ref

ref_no Reference number (16-bit integer)

DFTAG_NDG NDG tag (16-bit integer)

NDG_ref NDG reference number (16-bit integer)

DFTAG_SDG SDG tag (16-bit integer)

SDG_ref SDG reference number (16-bit integer)

The purpose of this tag is to link together an old-style DFTAG_SDG and a
DFTAG_NDG in cases where the NDG contains 32-bit floating point data
and is, therefore, equivalent to an old SDG.

See also: Chapter 4, “Sets and Groups”
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DFTAG_CAL Calibration information
36 bytes
731  (0x02DB)

ref_noDFTAG_CAL

cal offcal_err off_err data_type

ref_no Reference number (16-bit integer)

cal Calibration factor (64-bit IEEE float)

cal_err Error in calibration factor (64-bit IEEE float)

off Calibration offset (64-bit IEEE float)

off_err Error in calibration offset (64-bit IEEE float)

data_type Constant representing the effective data type of the
calibrated data (32-bit integer)

This tag points to a calibration record for the associated DFTAG_SD. The
data can be calibrated by first multiplying by the cal factor, then adding
the off value. Also included in the record are errors for the calibration
factor and offset and a constant indicating the effective data type of the
calibrated data. Table 6.6 lists the available data_type values.

Table 6.6 Available Calibrated Data Types

Data Type Description

DFTNT_INT8 Signed 8-bit integer
DFTNT_UINT8 Unsigned 8-bit integer
DFTNT_INT16 Signed 16-bit integer
DFTNT_UINT16 Unsigned 16-bit integer
DFTNT_INT32 Signed 32-bit integer
DFTNT_UINT32 Unsigned 32-bit integer
DFTNT_FLOAT32 32-bit floating point
DFTNT_FLOAT64 64-bit floating point
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DFTAG_FV Fill value
? bytes (size determined by size of data NT in corresponding

DFTAG_SDD)
732  (0x02DC)

fill_value

DFTAG_FV ref_no

ref_no Reference number (16-bit integer)

fill_value Value representing unset data in the corresponding
DFTAG_SD (size determined by size of data NT in
corresponding DFTAG_SDD)

This tag points to a value which has been used to indicate unset values
in the associated DFTAG_SD.  The number type of the value (and,
therefore, its size) is given in the corresponding DFTAG_SDD.
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Vset Tags

DFTAG_VG Vgroup
14 + 4*nelt + namelen + classlen bytes
1965  (0x07AD)

ref_noDFTAG_VG

nelt tag_1

ref_2

extag exref version more

tag_2 tag_n

ref_1 ref_n

namelen name classlen class

ref_no Reference number (16-bit integer)

nelt Number of elements in the Vgroup (16-bit integer)

tag_n Tag of the nth member of the Vgroup (16-bit integer)

ref_n Reference number of the nth member of the Vgroup (16-
bit integer)

namelen Length of the name field (16-bit integer)

name Non-null terminated ASCII string (length given by
namelen)

classlen Length of the class field (16-bit integer)

class Non-null terminated ASCII string (length given by
classlen)

extag Extension tag (16-bit integer)

exref Extension reference number (16-bit integer)

version Version number of DFTAG_VG information (16-bit integer)

more Unused (2 zero bytes)

DFTAG_VG provides a general-purpose grouping structure which can be
used to impose a hierarchical structure on the tags in the group. Any
HDF tag may be incorporated into a Vgroup, including other DFTAG_VG
tags.

See also: “Vsets, Vdatas, and Vgroups” in Chapter 4, 
“Sets and Groups”

NCSA HDF Vsets, Version 2.0 for HDF 
Version 3.2 and earlier

NCSA HDF User’s Guide and NCSA HDF 
Reference Manual for HDF Version 3.3
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DFTAG_VH Vdata description

22 + 10*nfields + Sfldnmlen n + namelen + classlen bytes
1962  (0x07AA)

ref_noDFTAG_VH

interlace nfields

classlen class extag exref

version more

nvert ivsize

type_2type_1 type_n

isize_2isize_1 isize_n

offset_2offset_1 offset_n

order_2order_1 order_n

fldnmlen_2fldnmlen_1 fldnm_1 fldnm_2

namelenfldnmlen_n fldnm_n name

ref_no Reference number (16-bit integer)

interlace Constant indicating interlace scheme used (16-bit
integer)

nvert Number of entries in Vdata (32-bit integer)

ivsize Size of one Vdata entry (16-bit integer)

nfields Number of fields per entry in the Vdata (16-bit integer)

type_n Constant indicating the data type of the nth field of the
Vdata (16-bit integer)

isize_n Size in bytes of the nth field of the Vdata (16-bit
integer)

offset_n Offset of the nth field within the Vdata (16-bit integer)

order_n Order of the nth field of the Vdata (16-bit integer)

fldnmlen_n Length of the nth field name string (16-bit integer)

fldnm_n Non-null terminated ASCII string (length given by
corresponding fldnmlen_n)

namelen Length of the name field (16-bit integer)

name Non-null terminated ASCII string (length given by
namelen)

classlen Length of the class field (16-bit integer)

class Non-null terminated ASCII string (length given by
classlen)

extag Extension tag (16-bit integer)

exref Extension reference number (16-bit integer)
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version Version number of DFTAG_VH information (16-bit
integer)

more Unused (2 zero bytes)

DFTAG_VH provides all the information necessary to process a
DFTAG_VS.

See also: DFTAG_VS (this section)
“Vsets, Vdatas, and Vgroups” in Chapter 4, 

“Sets and Groups”
NCSA HDF Vsets, Version 2.0 for HDF 

Version 3.2 and earlier
NCSA HDF User’s Guide and NCSA HDF 

Reference Manual for HDF Version 3.3
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DFTAG_VS Vdata

∑
=1

nfields

 isize_n   order_n nvert (                                 *
n

*  bytes, where nvert, isize_n,

and order_n  are specified in the corresponding DFTAG_VH
1963  (0x07AB)

ref_noDFTAG_VS

vdata

ref_no Reference number (16-bit integer)

vdata Data block interpreted according to the corresponding

DFTAG_VH ( ∑
=1

nfields

 isize_n   order_n nvert (                                 *
n

*

bytes, where nvert, isize_n, and order_n  are
specified in the corresponding DFTAG_VH)

DFTAG_VS contains a block of data which is to be interpreted according
to the information in the corresponding DFTAG_VH.

See also: DFTAG_VH (this section)
“Vsets, Vdatas, and Vgroups” in Chapter 4, 

“Sets and Groups”
NCSA HDF Vsets, Version 2.0 for HDF 

Version 3.2 and earlier
NCSA HDF User’s Guide and NCSA HDF 

Reference Manual for HDF Version 3.3
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Obsolete Tags

DFTAG_ID8 Image dimension-8
4 bytes
200  (0x00C8)

DFTAG_ID8 ref_no

x_dim y_dim

ref_no Reference number (16-bit integer)

x_dim Length of x dimension (16-bit integer)

y_dim Length of y dimension (16-bit integer)

The data for this tag consists of two 16-bit integers representing the
width and height of an 8-bit raster image in bytes.

This tag has been superseded by DFTAG_ID.

DFTAG_IP8 Image palette-8
768 bytes
201  (0x00C9)

DFTAG_IP8 ref_no

Red Green Blue

R0

R1

R255

G0

G1

B0

B1

G255 B255

ref_no Reference number (16-bit integer)

Table entries 256 triples of 8-bit integers

The data for this tag can be thought of as a table of 256 entries, each
containing one value for red, green, and blue. The first triple is palette
entry 0 and the last is palette entry 255.

This tag has been superseded by DFTAG_LUT.
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DFTAG_RI8 Raster image-8
xdim*ydim bytes (where xdim and ydim are the dimensions specified in

the corresponding DFTAG_ID8)
202  (0x00CA)

DFTAG_RI8 ref_no

ref_no Reference number (16-bit integer)

Image data 2-dimensional array of 8-bit integers

The data for this tag is a row-wise representation of the elementary 8-bit
image data. The data is stored width-first (i.e., row-wise) and is 8 bits
per pixel. The first byte of data represents the pixel in the upper-left
hand corner of the image.

This tag has been superseded by DFTAG_RI.

DFTAG_CI8 Compressed image-8
? bytes
203  (0x00CB)

DFTAG_CI8 ref_no

compressed_image

ref_no Reference number (16-bit integer)

compressed_image Series of run-length encoded bytes

The data for this tag is a row-wise representation of the elementary 8-bit
image data. Each row is compressed using the following run-length
encoding where n is the lower seven bits of the byte. The high bit
indicates whether the following n bytes will be reproduced exactly (high
bit = 0) or whether the following byte will be reproduced n times (high
bit = 1). Since DFTAG_CI8 and DFTAG_RI8 are basically
interchangeable, it is suggested that you not have a DFTAG_CI8 and a
DFTAG_RI8 with the same reference number.

This tag has been superseded by DFTAG_RLE.
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DFTAG_II8 IMCOMP image-8
? bytes
204  (0x00CC)

DFTAG_II8 ref_no

compressed_image

ref_no Reference number (16-bit integer)

compressed_image Compressed image data

The data for this tag is a 4:1 compressed 8-bit image, using the
IMCOMP compression scheme.

This tag has been superseded by DFTAG_IMC.
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DFTAG_SDG Scientific data group
n*4 bytes (where n is the number of data objects in the group)
700  (0x02BC)

DFTAG_SDG ref_no

tag_1 ref_1 tag_2 ref_2

ref_no Reference number (16-bit integer)

tag_n Tag number of nth member of the group (16-bit integer)

ref_n Reference number of nth member of the group (16-bit
integer)

The SDG data element contains a list of tag/refs that define a scientific
data set. All of the members of the group provide information required
to correctly interpret and display the data. Application programs that
deal with SDGs should read all of the elements of an SDG and process
those which it can use. Even if an application cannot process all of the
objects, the objects that it can understand will be usable.

Table 6.7 lists the tags that may appear in an SDG.

Table 6.7 Available SDG Tags

Tag Description

DFTAG_SDD Scientific data dimension record (rank and
dimensions)

DFTAG_SD Scientific data
DFTAG_SDS Scales
DFTAG_SDL Labels
DFTAG_SDU Units
DFTAG_SDF Formats
DFTAG_SDM Maximum and minimum values
DFTAG_SDC Coordinate system
DFTAG_SDT Transposition (obsolete)
DFTAG_SDLNK Link to new DFTAG_NDG

Example
DFTAG_SDD, DFTAG_SD, DFTAG_SDM
Assume that a dimension record, scientific data, and the maximum and
minimum values of the data are required to read and interpret a particular
data set. These data objects can be associated in an SDG so that an
application can read the rank and dimensions from the dimension record
and then read the data array. If the application needs the maximum and
minimum values, it will read them as well.

This tag has been superseded by DFTAG_NDG.

See also: Chapter 4, “Sets and Groups”
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DFTAG_SDT Scientific data transpose
0 bytes
709  (0x02C5)

ref_noDFTAG_SDT

ref_no Reference number (16-bit integer)

The presence of this tag in a group indicates that the data pointed to by
the corresponding DFTAG_SD is in column-major order, instead of the
default row-major order. No data is associated with this tag.

This tag is no longer written by the HDF library.  When it is
encountered in an old file, it is interpreted as originally intended.
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Chapter 7 Portability Issues

Chapter Overview

The NCSA implementation of HDF is accessible to both C and
FORTRAN programs and is implemented on many different machines
and several operating systems.  There are important differences between
C and FORTRAN, and among implementations of each language,
especially FORTRAN. There are also important differences among the
machines and operating systems that HDF supports.

If HDF is to be a portable tool, these differences must be constructively
addressed.  This chapter describes many of these differences, discusses
the problems and issues associated with them, and presents the methods
employed in the HDF implementation to reduce their impact.

The HDF Environment

The list of machines and operating systems on which HDF is
implemented is steadily growing.  For reasons that this chapter will
make clear, the number of NCSA-supported HDF platforms is growing
slowly.  Every time a platform is added, additional code must be written
to address concerns of memory management, operating system and file
system differences, number representations, and differences in
FORTRAN and C implementations on that system.
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Supported Platforms As of this writing, NCSA supports the platforms listed in Table 7.1.

Table 7.1 NCSA-supported HDF Platforms

Hardware Platform Operating System

Convex Concentrix

Cray X-MP, Y-MP, Cray 2 UNICOS

DEC Alpha Ultrix

DECStation Ultrix

HP 9000 HPUX

IBM PC MS DOS, Windows 3.1

IBM RS/6000 AIX

IBM RT UNIX

Macintosh MPW Shell

NeXT NeXTStep

Silicon Graphics UNIX

Sun Sparc UNIX

Vax VMS

HDF has also been ported to several platforms that NCSA does not
currently support.  These include Alliant, Apollo (Domain), HP 3000,
Stellar, Amiga, Symbolics, Fujitsu, and IBM 3090 (MVS).

Language Standards Unfortunately, not all compilers are the same.  FORTRAN compilers
often differ in the ways they pass parameters, in the identifier naming
conventions they employ, and in the number types that they support.
Similarly, though generally not as drastically, C compilers differ in the
number types that they support and in their adherence to the ANSI C
standard.

To minimize the difficulties caused by these differences, the HDF
source code is written primarily in the following dialects:

• FORTRAN 77
• ANSI C
• The original C defined by Kernighan and Ritchie1, hereafter

referred to as old C
Almost all platforms have C and FORTRAN compilers that adhere to
at least one of these standards.

When time and resources permit, NCSA attempts to support features or
variations in other dialects of C and FORTRAN, particularly on
platforms that are important to NCSA users.  Much of the remainder of
this chapter addresses these efforts.

Guidelines One cannot over stress the importance of following the guidelines
outlined in this chapter.  It may take longer to write code and it may be
difficult to adapt your coding style, but the long-term benefits, in terms
of portability and maintenance costs, will be well worth the effort.

1 The version of C described in the first edition of The C Programming Language, by Brian Kernighan and Dennis Ritchie,
published by Prentice-Hall.
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Organization of Source Files

Three types of files appear in the HDF source code directory:
• Header files
• Source code files
• A makefile

Header files  and source code files are organized by application area.  All
of the functions that apply to a particular application area are stored in
three source files, and all the definitions and declarations that apply to
that application are stored in a corresponding header file.  The makefile
describes the dependencies among the source and header files and
provides the commands required to compile the corresponding libraries
and utilities.

Header Files Certain application modules require header files.  The header file
dfan.h, for example, contains definitions and declarations that are
unique to the annotation interface.

There are also several general header files that are used in compiling the
libraries for all application areas:

hdf.h, hdfi.h2

hdf.h contains declarations and definitions for the common data
structures used throughout HDF, definitions of the HDF tags,
definitions of error numbers, and definitions and declarations
specific to the general purpose interface.  Since hdf.h depends on
hdfi.h, it includes hdfi.h via #include.

hdfi.h contains information specific to the various NCSA-
supported HDF computing environments, environmental
parameters that need to be set to particular values when compiling
the HDF libraries, and machine dependent definitions of such
things as number types and macros for reading and writing
numbers.

When porting HDF to a new system, only hdfi.h and the
makefile should need to be modified, though there may be
exceptions.

It is normally a good idea to include hdf.h  (and therefore
indirectly hdfi.h) in user programs, though users usually need
not be aware of its contents.

hproto.h
This file contains ANSI C prototypes for all HDF C routines.  It
must be included in ANSI C programs that call HDF routines.

constants.i
This file is for use in FORTRAN programs.  It contains important
constants, such as tag values, that are defined in hdf.h.  Systems
with FORTRAN preprocessors might be able to include this file
via #include statements or their equivalent.

dffunc.i
This file is for use in FORTRAN programs.  It contains
declarations of all HDF FORTRAN-callable functions.  Systems
with FORTRAN preprocessors might be able to include this file
via #include statements or their equivalent.

2 In earlier implementations of HDF, these files were called df.h and dfi.h.  Starting with HDF Version 3.2, the general
purpose layer of HDF was completely rewritten and all routine names were changed from df* to hdf*.
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Source  Code Files All HDF operations are performed by routines written in C.  Hence,
even FORTRAN calls to HDF result in calls to the corresponding C
routines.  Because of the problems described below the relationships
between the C routines and the corresponding FORTRAN routines can
be confusing.  This section discusses the C and FORTRAN source file
organization.  It is followed by discussions of problems users will face
in the FORTRAN–C interface.

HDF interfaces typically  have three or four associated files.  For
example, the scientific data set (SDS) interface is associated with the
following files: dfsd.h, dfsd.c, dfsdf.c, and dfsdff.f.

These files fill the following roles:

Header files
The *.h files are header files.

Normal C routines
These routines do the actual HDF work.  The others are used
to transfer control and data from a FORTRAN environment to
a C environment.

These routines are in the *.c files, as in dfsd.c.  Every call
to HDF, whether from C or FORTRAN, ultimately results in
a call to one of these routines.

C routines that are directly callable from FORTRAN
These routines provide recognizable function names to the
linker.  They may also perform operations on data they receive
from the FORTRAN routines that call them, such as
transferring a FORTRAN string to a local C data area.
Examples are provided below.

These routines are in the *f.c files, such as dfsdf.c.  The
f means that the routines can be called from FORTRAN; the
.c means that they are C source code.

FORTRAN routines that perform some operation on the
parameters that C would be  unable to perform, before and/or
after calling the corresponding C routine

These routines are required, for example, when one of the
parameters is a string. The corresponding C routine has no
way of knowing the length of the string unless it is explicitly
given the length by the FORTRAN routine.

These routines are in the *ff.f files, such as dfsdff.f.
The ff means that the routines perform some FORTRAN
operation that C cannot perform and that they are to be called
from FORTRAN; the .f means that they are FORTRAN
source code.

The roles of these different types of source file types will become
clearer as we look at some of the problems that arise in interfacing C
and many different implementations of FORTRAN.
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File naming conventions The naming conventions for HDF library source code files are
complicated by several factors.  Because HDF must accommodate a
wide variety of platforms, all files that will compile to object modules
must have names that are unique in the first 8 characters, ignoring case.
The difficulties involved in maintaining a FORTRAN-callable interface
to a library that is primarily written in C further complicate the naming
of source code files.

Passing Strings Between FORTRAN and C

One of the most important differences between FORTRAN and C
compilers is in the way strings are represented.  Different compilers use
different data structures for strings, and supply string length information
in different ways.

Passing Strings from
FORTRAN to C

When strings are passed between FORTRAN and C routines, they may
need to be converted from one representation to the other.  C compilers
store strings in an array of type char, terminated by a null byte (\0).
The name of a string variable is equivalent to a pointer the first
character in the string.  FORTRAN compilers are not consistent in the
ways that they store strings.

Two pieces of information must be acquired before FORTRAN can pass
a string to C:

The string’s length
The string’s address

The string’s length is determined by invoking the standard FORTRAN
function len(), which returns the length of a string.  Since C expects
a null byte at the end of a string, care must be taken that this null byte
does not overwrite useful information in the FORTRAN string.

Determining the string’s address is more difficult because of the
different ways that different FORTRAN implementations store strings.
The macro _fcdtocp (FORTRAN character descriptor to C pointer) is
used to acquire this information.  _fcdtocp is one of the elements that
must be customized for each platform.  The following paragraphs
discuss several existing customized implementations:

• UNICOS FORTRAN stores strings in a structure called _fcd
(FORTRAN character descriptor).  _fcdtocp is a built-in UNICOS
function that returns the string’s address.  (Since UNICOS provides
this function, HDF omits the corresponding macro definition on
UNICOS systems.)

• VMS FORTRAN uses a string descriptor structure that provides the
string’s address and length.  When compiled under VMS, _fcdtocp
extracts the string's address from that structure.

• Most other FORTRAN compilers supported by HDF store strings
just as C does, in character arrays with the array name identifying
the array's address.  In such situations, nothing special needs to be
done to pass a string from FORTRAN to C, except to add a NULL
byte..

An HDF FORTRAN call that involves passing a string results in the
following sequences of actions:



NCSA HDF Specification and Developer’s Guide

7-6 National Center for Supercomputing Applications

1. A FORTRAN filter routine determines the length and address in
memory of the string.  Since this filter is a FORTRAN routine, it
can be found in the appropriate *ff.f file.

2. The FORTRAN filter then calls a C routine, to which it passes all
parameters from the initial call the string's length.

3. The C routine converts the FORTRAN string to a C string by
copying it to a C array of type char and appending a null byte.
Since this C routine serves as a link between a FORTRAN filter
and the corresponding C interface call, it  can be found in the
appropriate *f.c file.

4. This C routine then calls the HDF C routine that performs the
actual work.

This process is illustrated in Figure 7.1

Figure 7.1.  Sequence of Events When a FORTRAN Call Includes a String as a Parameter

...
ret = dsgdim('      ',     , ...)
...

User's program

dfsdFf.f

dfsdF.c

dfsd.c

libdf.a  (the HDF library)

User's FORTRAN program calls 
dsgdims.  The parameter 
 is a string.

dsgdim()
...
dsigdim(        ,    ,...,len(        ))
...

The FORTRAN function dsgdim  
calls the C function dsigdim,  
adding an extra parameter--the 
length of the filename  parameter .

...
DFSDgetdims(  ,      ,...)
...

dsigdim()

DFSDgetdims()
DFSDgetdims  performs the 
actual HDF function, getting the 
rank and dimension of the next 
scientific data set in the file.

dsigdim  converts the 
FORTRAN string stored in 
filename  to a C string, then 
calls DFSDgetdims.

myfilemyfile

filenamefilename rank

fn prank

rank
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Passing Strings from C
to FORTRAN

When strings are passed from C to FORTRAN, the reverse procedure is
followed.  First, a string pointer is allocated within the FORTRAN
routine's data area.  (It is assumed that the space pointed to has already
been allocated, and is sufficiently large to hold the string.)   The string
is then copied from the C data area to the FORTRAN data area.
Finally, the FORTRAN string's data area is padded with blanks, if
necessary.

Function Return Values between FORTRAN and C

When a FORTRAN routine calls a C function, it always expects a
return value from that function.  Unfortunately, C functions do not
always return arguments in a FORTRAN-compatible format.

To solve this problem, some FORTRAN compilers offer the option of
controlling the form of the return value from a function.  For example,
Language Systems FORTRAN for the Macintosh requires that all C
function declarations be prepended by the word pascal so that the
return value can be recognized by a FORTRAN routine that calls it, as
in:

pascal int dsgrang(void *pmax, void *pmin)

Since C always expects return values to be passed by value rather than,
say, by reference, it is important to coerce FORTRAN functions to do
the same.  This is accomplished by defining a macro FRETVAL that is
prepended to the declaration of every FORTRAN-callable C function.
For example:

    FRETVAL(int)
dsgrang(void *pmax, void *pmin)

If Language Systems FORTRAN is to be used, FRETVAL is defined in
hdfi.h as follows:

#if defined(MAC)        /* with LS FORTRAN */
#   define FRETVAL(x)   pascal x
#endif

Differences in Routine Names

HDF generally employs standard C conventions in naming routines.
But many FORTRAN compilers impose varying restrictions on the
length, character set, and form of identifiers, some of which are
considerable more restrictive than the C conventions.  Therefore, an
extra effort must be made to accommodate those FORTRAN compilers.

To address this issue, HDF defines a set of preprocessor flags in
hdfi.h.  Then conditional compilation, with #ifdef statements in
the source code , produces routine names that the target system’s
FORTRAN will understand.
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Case  Sensitivity C compilers are case sensitive; uppercase and lowercase letters are
recognized as different characters.  Many FORTRAN compilers are not
case sensitive; they allow users to use uppercase and lowercase letters
while naming routines in the source code, but the names are converted
to all uppercase or all lowercase in the object module symbol tables.
Routine name recognition problems are common when routines
compiled by a case sensitive compiler are to be linked with routines
compiled by a non-case sensitive compiler.

For example, the UNICOS FORTRAN compiler allows you to name
routines without regard to case, but produces object module symbol
tables with the routine names in all uppercase.  UNICOS C, on the
other hand, performs no such conversion.

Consider the HDF routine Hopen.  Hopen is written in C, so the HDF
library symbol table contains the name Hopen.  Suppose you make the
following call in your UNICOS FORTRAN program:

file_id = Hopen('myfile', ...)

The FORTRAN compiler will create an object module symbol table
with the routine name HOPEN.  When you link it to the HDF library, it
will find Hopen but not HOPEN, and will generate an unsatisfied
external reference error.

HDF supports the following non-case sensitive compilers:
• VMS FORTRAN
• UNICOS FORTRAN
• Language Systems FORTRAN.
All of these compilers convert identifiers to all uppercase when building
an object module symbol table.  In the following discussion, they are
referred to as all-uppercase compilers.

The HDF Solution HDF addresses the all-uppercase compiler problem in the platform-
specific section of hdfi.h where the DF_CAPFNAMES flag is defined.
With conditional compilation, HDF generates all-uppercase routine
names and symbol table entries.

Once again, consider UNICOS.  The UNICOS section of hdfi.h
contains the following line:

#define DF_CAPFNAMES

The *f.c files contain corresponding conditional sections that  produce
all-uppercase routine names.  For example, the function name Fun can
be redefined as FUN:

#ifdef DF_CAPFNAMES
   define  Fun  FUN
#endif /* DF_CAPFNAMES */

Appended Underscores Differing compiler conventions create a similar problem in their use of
the underscore ( _ ) character.  Many compilers, including most C
compilers, prepend an underscore to all external symbols in the object
module symbol table.  The linker then looks for external symbols in
other symbol tables with the prefixed underscore.

Many FORTRAN compilers also append an underscore to identify
external symbols.  Since C compilers do not generally do this, external
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references in FORTRAN-generated object modules will not recognize
externals with the same names in C-generated modules.

For example, the FORTRAN compiler on the CONVEX system places
an underscore both at the beginning and at the end of routine names,
while the C compiler places an underscore only at the beginning.

Since FUN is a C function, it appears under the name _FUN in the
object module containing it.  Now suppose you make the following
call in a FORTRAN program:

x = FUN(y)

The FORTRAN compiler will create an object module symbol table
with the routine name _FUN_.  When you link it to the C module, the
linker will be unable to link _FUN and _FUN_ and will generate an
unsatisfied external reference error.

The HDF Solution Like the all-uppercase compiler problem, this issue is resolved in the
platform-specific sections of hdfi.h and with conditional sections of
code that append an underscore to C routine names on platforms where
the FORTRAN compiler expects it.

This is implemented as follows: The FNAME_POST_UNDERSCORE flag is
defined in the platform-specific section of hdfi.h for every platform
whose FORTRAN compiler requires appended underscores.  Similarly,
the FNAME_PRE_UNDERSCORE flag is defined on platforms where the
FORTRAN compiler expects prepended underscores.  The macro FNAME
is then defined to append and/or prepend underscores as required.

The FNAME macro is then applied to each routine in the module in
which it is actually defined (including in hptroto.h), adding the
appropriate underscores.

Consider the above example in which Fun was renamed FUN.  The
actual definition appears as follows:

#ifdef DF_CAPFNAMES
   define  Fun  FNAME(FUN)
#endif /* DF_CAPFNAMES */

Short Names vs. Long
Names

In the C implementations supported by HDF, identifiers may be any
length with at least the first 31 characters being significant.
FORTRAN compilers differ in the maximum lengths of identifiers that
they allow, but all of those supported by HDF allow identifiers to be at
least seven characters long.

To deal with the discrepancies between identifier lengths allowed by C
and those allowed by the various FORTRAN compilers, a set of
equivalent short names has been created for use when programming in
FORTRAN.  For every HDF routine with a name more than seven
characters long, there is an identical routine whose name is seven or
fewer characters long.

For example, the routines DFSDgetdims (in dfsd.c) and dsgdims
(in dfsdff.f) are functionally identical.
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Differences Between ANSI C and Old C

The current HDF release supports both ANSI C and old C compilers.
ANSI C is preferred because it has many features that help ensure
portability; unfortunately, many important platforms do not support
full ANSI C.  The HDF code determines whether ANSI C is available
from the flag __STDC__.  If ANSI C is available on a platform, then
__STDC__ is defined by the compiler.3

The most noticeable difference between ANSI C and old C is in the way
functions are declared.  For example, in ANSI C the function
DFSDsetdims() is declared with a single line:

int DFSDsetdims(intn rank, int32 dimsizes[])

In old C the same function is declared as follows:

int DFSDsetdims(rank, dimsizes)
intn rank;
int32  dimsizes[];

HDF accommodates these differences by defining the flag PROTOTYPE
in hdfi.h.  PROTOTYPE is used for every function declaration in a
manner similar to the following example:

#ifdef PROTOTYPE
int DFSDsetdims(intn rank, int32 dimsizes[])
#else
int DFSDsetdims(rank, dimsizes)
intn rank;
int32  dimsizes[];
#endif /* PROTOTYPE */

Note that prototypes are supported by some C compilers that are not
otherwise ANSI-conformant.  In such situations, PROTOTYPE is defined
even though __STDC__ is not.

Another difference between old C and ANSI C is that ANSI C supports
function prototypes with arguments.  (Old C also supports function
prototypes, but without the argument list.)  , This feature helps in
detecting errors in the number and types of arguments.  This difference
is handled by means of a macro PROTO, which is defined as follows:

#ifdef PROTOTYPE
#define    PROTO(x) x
#else
#define    PROTO(x) ()
#endif

This macro is applied as in the following example:

extern int32 Hopen
PROTO((char *path, intn access, int16 ndds));

When PROTOTYPE is defined, PROTO causes the argument list to stay
as it is.  When PROTOTYPE is not defined, PROTO causes the argument
list to disappear.

3 __STDC__ is generally defined by ANSI-conforming C compilers.  Some C compilers are not entirely ANSI-conforming,
yet they conform well enough that the HDF implementation can treat them as if they were.  In such cases, it is permissible
to define __STDC__ by adding the option -D__STDC__ to the cc line in the makefile.
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Type Differences

Platforms and compilers also differ in the sizes of numbers that they
assign to different data types, in their representations of different
number types, and in the way they organize aggregates of numbers
(especially structures).

Size differences The same number type can be different sizes on different platforms.
The type int, for example, is 16 bits to many IBM PC compilers, 48
bits to some supercomputer compilers, and 32 bits on most others.
This can cause problems that are difficult to diagnose in code, like the
HDF code, that depends in many places on numbers being the right
size.

HDF handles this problem by fully defining all variable types and
function data types via typedef, including the number of bits
occupied.  All parameters, members of structures, and static, automatic,
and external variables are so defined .

The HDF data types include the following (types with the prefix u are
unsigned.)

int8
uint8
int16
uint16
int32
uint32
float32
float64
intn
uintn

For each machine, typedefs are declared that map all of the data types
used into the best available types.  For example, int32 is defined as
follows for Sun's C compiler:

typedef long int int32;

Unfortunately, the HDF data types do not always map exactly to one of
the native data types.  For example, the Cray UNICOS C compiler does
not support a 16-bit data type.  In such instances, HDF uses the best
available match and care is taken to minimize potential problems.

The data types intn and uintn are for situations where it can be
determined that number type size is unimportant and that a 16-bit
integer is large enough to hold any value the number can have.   In
such cases, the native integer type (or unsigned integer type) of the host
machine is used.  Experience indicates that substantial performance
gains can be achieved by using intn or uintn in certain
circumstances.
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Number Representation One of the keys to producing a portable file format is to ensure that
numbers that are represented differently on different machines are
converted correctly when moved from machine to machine.  HDF
provides conversion routines to convert between native representations
and a standard representation that is actually used in the HDF file.  This
ensures that HDF data will always be interpreted correctly, regardless of
the platform on which it is read or written.  Details of this process will
be included in a later edition of this manual.

Byte-order and Structure
Representations

Even when the basic bit-representation of constants or aggregates like
structures is the same across platforms, the ways that the bits are
packed into a word and the order in which the bits are laid out can differ.
For example, DEC and Intel-based machines generally order bytes
differently from most others.  And the C compiler on a Cray, with a
64-bit word, packs structures differently from those on 32-bit word
machines.

Differences in byte order among machines are handled in either of two
ways.  When the data to be written (or read) includes non-integer data
and/or a large array of any type of data, conversion routines mentioned
in the previous section, “Number Representation,” are invoked.  When
an individual integer is to be written (or read), an ENCODE or DECODE
macro is used.

The following ENCODE and DECODE macros are available for 16-bit
and 32-bit integers:

INT16ENCODE
UINT16ENCODE
INT32ENCODE
UINT32ENCODE
INT16DECODE
UINT16DECODE
INT32DECODE
UINT32DECODE

The ENCODE macros write integers to an HDF file in a standard
format regardless of the word-size and byte order of the host machine.

Likewise, the DECODE macros read integers from a standard format in
an HDF file and provide the integers in the required byte order and word
size to the host machine.

Since the ENCODE and DECODE macros deal with both byte order and
word size, they are also used in reading and writing record-like
structures.  For example, an HDF data descriptor consists of two 16-bit
fields followed by two 32-bit fields, as implied by the following C
declaration:

struct {
uint16 tag;
uint16 ref;
uint32 offset;
uint32 length;

}

Even though this structure might occupy 12 bytes on one platform or
32 bytes on another (e.g., a Cray), it must occupy exactly 12 bytes in
an HDF file.  Furthermore, some machines represent the numbers
internally in different byte orders than others, but the byte order must
always be big-endian in an HDF file.  The ENCODE and DECODE
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macros ensure that these values are always represented correctly in HDF
files and as presented to any host machine.

Access to Library Functions

Despite standardization efforts, function libraries often differ in
significant ways.  At least three types of functions require special
treatment in the HDF implementation:

File I/O
Some platforms use 16-bit values for the element size and the
number of elements to write or read, while others use 32-bit
values.  This must be considered when working with either stream
or system level I/O functions (i.e., the functions associated with
the fopen() and open() calls).

Memory allocation and release
First, 16-bit machines use a 16-bit value to indicate the number of
bytes to allocate or release at one time.  Second, certain operating
systems (notably MS Windows and MAC/OS) don't have
malloc() and free() calls.  These operating systems use
handles for allocating memory and require different function calls.

Memory and string manipulation
These functions (e.g., memcpy(), memcmp(), strcpy(), and
strlen()) require slightly different function names under different
memory models in MS DOS and under MS Windows than on
most other systems.

HDF accommodates these special situations by defining appropriate
macros in the machine-specific sections of hdfi.h.
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Appendix A Tags and Extended Tag Labels

The tables in this appendix lists all of the NCSA-supported HDF tags
and the labels used to identify extended tags.

Tags

Table A.1 lists all the NCSA-supported HDF tags with the following
information:

Tag The tag itself

Tag number The regular tag number in decimal (top) and
hexadecimal (bottom)

Extended tag number
The extended tag number used with linked blocks and
external data elements in decimal and (hexadecimal)

Full name The tag name, a descriptive English phrase

Section The section of Chapter 6, “Tag Specifications,” in
which the tag is discussed

Table A.1 NCSA-supported HDF Tags

Tag Number
Extended
Number Full Name Section

DFTAG_AR 312
0x0138

Aspect ratio Raster Image Tags

DFTAG_CAL 731
0x02DB

Calibration information Scientific Data Set Tags

DFTAG_CCN 310
0x0136

Color correction Raster Image Tags

DFTAG_CFM 311
0x0137

Color format Raster Image Tags

DFTAG_CI8 203
0x00CB

Compressed image-8 Obsolete Tags

DFTAG_DIA 105
0x0069

Data identifier annotation Annotation Tags
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Table A.1 NCSA-supported HDF Tags (Continued)

Tag Number
Extended
Number Full Name Section

DFTAG_DIL 104
0x0068

Data identifier label Annotation Tags

DFTAG_DRAW 400
0x0190

Draw Composite Image Tags

DFTAG_FD 101
0x0065

File description Annotation Tags

DFTAG_FID 100
0x0064

File identifier Annotation Tags

DFTAG_FV 732
0x02DC

Fill value Scientific Data Set Tags

DFTAG_GREYJPEG 14
0x000E

8-bit JPEG compression
information

Compression Tags

DFTAG_ID 300
0x012C

Image dimension Raster Image Tags

DFTAG_ID8 200
0x00C8

Image dimension-8 Obsolete Tags

DFTAG_II8 204
0x00CC

IMCOMP image-8 Obsolete Tags

DFTAG_IMC 12
0x000C

IMCOMP compressed data Compression Tags

DFTAG_IP8 201
0x00C9

Image palette-8 Obsolete Tags

DFTAG_JPEG 13
0x000D

24-bit JPEG compression
information

Compression Tags

DFTAG_LD 307
0x0133

LUT dimension Raster Image Tags

DFTAG_LUT 301
0x012D

Lookup table Raster Image Tags

DFTAG_MA 309
0x0135

Matte channel Raster Image Tags

DFTAG_MD 308
0x0134

Matte channel dimension Raster Image Tags

DFTAG_MT 107
0x006B

Machine type Utility Tags

DFTAG_NDG 720
0x02D0

Numeric data group Scientific Data Set Tags

DFTAG_NT 106
0x006A

Number type Utility Tags

DFTAG_NULL 1
0x0001

No data Utility Tags

DFTAG_RI 302
0x012E

16686
0x412E

Raster image Raster Image Tags

DFTAG_RI8 202
0x00CA

Raster image-8 Obsolete Tags
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Table A.1 NCSA-supported HDF Tags (Continued)

Tag Number
Extended
Number Full Name Section

DFTAG_RIG 306
0x0132

Raster image group Raster Image Tags

DFTAG_RLE 11
0x000B

Run length encoded data Compression Tags

DFTAG_SD 702
0x02BE

17086
0x42BE

Scientific data Scientific Data Set Tags

DFTAG_SDC 708
0x02C4

Scientific data coordinates Scientific Data Set Tags

DFTAG_SDD 701
0x02BD

Scientific data dimension
record

Scientific Data Set Tags

DFTAG_SDF 706
0x02C2

Scientific data format Scientific Data Set Tags

DFTAG_SDG 700
0x02BC

Scientific data group Obsolete Tags

DFTAG_SDL 704
0x02C0

Scientific data labels Scientific Data Set Tags

DFTAG_SDLNK 710
0x02C6

Scientific data set link Scientific Data Set Tags

DFTAG_SDM 707
0x02C3

Scientific data max/min Scientific Data Set Tags

DFTAG_SDS 703
0x02BF

Scientific data scales Scientific Data Set Tags

DFTAG_SDT 709
0x02C5

Scientific data transpose Obsolete Tags

DFTAG_SDU 705
0x02C1

Scientific data units Scientific Data Set Tags

DFTAG_T105 603
0x25B

Tektronix 4105 Vector Image Tags

DFTAG_T14 602
0x25A

Tektronix 4014 Vector Image Tags

DFTAG_TD 103
0x0067

Tag description Annotation Tags

DFTAG_TID 102
0x0066

Tag identifier Annotation Tags

DFTAG_VERSION 30
0x001E

Library version number Utility Tags

DFTAG_VG 1965
0x07AD

Vgroup Vset Tags

DFTAG_VH 1962
0x07AA

Vdata description Vset Tags

DFTAG_VS 1963
0x07AB

18347
0x47AB

Vdata Vset Tags

DFTAG_XYP 500
0x01F4

X-Y position Composite Image Tags
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Extended Tag Labels

Table A.2 lists labels used to identify HDF extended tags.  The table
includes the following information:

Extended tag label
The label, which appears as the first element of the
extended tag description record

Physical storage method
The alternative storage method indicated by the label

Table A.2 Extended Tag Labels

Extended Tag Label Physical Storage Method

EXT_EXTERN External file element
EXT_LINKED Linked block element


