
Machine Independent Format

MIF Data Elements

ERDAS IMAGINE uses the Machine Independent Format (MIF) to store data in a fashion which can be read by

a variety of machines. This format provides support for converting data between the IMAGINE standard data

format and that of the specific host’s architecture. Files created using this package on one machine will be

readable from another machine with no explicit data translation.

Each MIF file is made up of one or more of the data elements explained below.

EMIF_T_U1 (Unsigned 1−bit Integer)

U1 is for unsigned 1−bit integers (0 − 1). This data type can be used for bitmap images with "yes/no" conditions.

When the data are read from a MIF file, they are automatically expanded to give one value per byte in memory.

When they are written to the file, they are automatically compressed to place eight values into one output byte.

7 6 5 4 3 2 1 0

U1

_7

U1_

6

U1_

5

U1_

4

U1_

3

U1_

2

U1_

1

U1_

0

byte 0

EMIF_T_U2 (Unsigned 2−bit Integer)

U2 is for unsigned 2−bit integers (0 − 3). This data type can be used for thematic data with 4 or fewer classes.

When the data are read from a MIF file they are automatically expanded to give one value per byte in memory.

When they are written to the file, they are automatically compressed to place four values into one output byte.

7 5 3 1

U2_3 U2_2 U2_1 U2_0

byte 0

EMIF_T_U4 (Unsigned 4−bit Integer)

U4 is for unsigned 4−bit integers (0 − 15). This data type can be used for thematic data with 16 or fewer classes.

When these data are read from a MIF file, they are automatically expanded to give one value per byte. When

they are written to the file they are automatically compressed to place two values into one output byte.

7 3

U4_1 U4_0

byte 0

EMIF_T_UCHAR (8−bit Unsigned Integer)

This stores an 8−bit unsigned integer. It is most typically used to store characters and raster imagery

7

integer

.

byte 0

EMIF_T_CHAR (8−bit Signed Integer)

This stores an 8−bit signed integer

7

integer

.

byte 0

EMIF_T_USHORT (16−bit Unsigned Integer)

This stores a 16−bit unsigned integer, stored in Intel byte order. The least significant byte (byte 0) is stored first.

15

integer

byte

1

byte

0

EMIF_T_SHORT (16−bit Signed Integer)

This stores a 16−bit two’s−complement integer, stored in Intel byte order. The least significant byte is stored

first.

15

integer

byte

1

byte

0

EMIF_T_ENUM (Enumerated Data Types)

This stores an enumerated data type as a 16−bit unsigned integer, stored in Intel byte order. The least significant

byte is stored first. The list of strings associated with the type are defined in the data dictionary which is defined

below. The first item in the list is indicated by 0.

15

integer

byte

1

byte

0

EMIF_T_ULONG (32−bit Unsigned Integer)

This stores a 32−bit unsigned integer, stored in Intel byte order. The least significant byte is stored first.

31

integer

byte

3

byte

2

byte

1

byte

0

EMIF_T_LONG (32−bit Signed Integer)

This stores a 32−bit two’s−complement integer value, stored in Intel byte order. The least significant byte is

stored first.

31

integer

byte

3

byte

2

byte

1

byte

0

EMIF_T_PTR (32−bit Unsigned Integer)

This stores a 32−bit unsigned integer, which is used to provide a byte address within the file. Byte 0 is the first

byte, byte 1 is the second, etc. This allows for indexing into a 4−Gigabyte file, however most UNIX systems

only allow 2−Gigabyte files.

i Currently, this element appears in the data dictionary as a EMIF_T_ULONG element. In future versions of

the file format, the EMIF_T_PTR will be expanded to an 8−byte format which will allow indexing using 64

bits which allow addressing of 16 billion Gigabytes of file space.

31

integer

byte

3

byte

2

byte

1

byte

0

EMIF_T_TIME (32−bit Unsigned Integer)

This stores a 32−bit unsigned integer, which represents the number of seconds since 00:00:00 1 JAN 1970. This

is the standard used in UNIX time keeping. The least significant byte is stored first.

31

integer

byte

3

byte

2

byte

1

byte

0

EMIF_T_FLOAT (Single Precision Floating Point)

Single precision floating point values are IEEE floating point values.

s = sign (0 = positive, 1 = negative)

exp = 8 bit excess 127 exponent

fraction = 24 bits of precision (includes 1 hidden bit)

31
30 22

s exp fraction

byte

3

byte

2

byte

1

byte

0

EMIF_T_DOUBLE (Double Precision Floating Point)

Double precision floating point data are IEEE double precision.

s = sign (0 = positive, 1 = negative)

exp = 11 bit excess 1023 exponent

fraction = 53 bits of precision (includes 1 hidden bit)

63
62 51

s exp fraction

byte

7

byte

6

byte

5

byte

4

byte

3

byte

2

byte

1

byte

0

EMIF_T_COMPLEX (Single Precision Complex)

A complex data element has a real part and an imaginary part. Single precision floating point values are IEEE

floating point values.

s = sign (0 = positive, 1 = negative)

exp = 8 bit excess 127 exponent

fraction = 24 bits of precision (includes 1 hidden bit)

Real part: first single precision

31
30 22

s exp fraction

byte

3

byte

2

byte

1

byte

0

Imaginary part: second single precision

31
30 22

s exp fraction

byte

3

byte

2

byte

1

byte

0

EMIF_T_DCOMPLEX (Double Precision Complex)

A complex data element has a real part and an imaginary part. Double precision floating point data are IEEE

double precision.

s = sign (0 = positive, 1 = negative)

exp = 11 bit excess 1023 exponent

fraction = 53 bits of precision (includes 1 hidden bit)

Real part: first double precision

63
62 51

s exp fraction

byte

7

byte

6

byte

5

byte

4

byte

3

byte

2

byte

1

byte

0

Imaginary part: second double precision

63
62 51

s exp fraction

byte

15

byte

14

byte

13

byte

12

byte

11

byte

10

byte

9

byte

8

EMIF_T_BASEDATA (Matrix of Numbers)

A BASEDATA is a generic two dimensional array of values. It can store any of the types of data used by

IMAGINE. It is a variable length object whose size is determined by the data type, the number of rows, and the

number of columns.

numrows: This indicates the number of rows of data in this item.

31

integer

byte

3

byte

2

byte

1

byte

0

numcolumns: This indicates the number of columns of data in this item.

31

integer

byte

7

byte

6

byte

5

byte

4

datatype: This indicates the type of data stored here. The types are:

Data Type BytesPerObject

0 EMIT_T_U1 1/8

1 EMIF_T_U2 1/4

3 EMIT_T_U4 1/2

4 EMIF_T_UCHAR 1

5 EMIF_T_CHAR 1

6 EMIF_T_USHORT 2

7 EMIF_T_SHORT 2

8 EMIF_T_ULONG 4

9 EMIF_T_LONG 4

10 EMIF_T_FLOAT 4

11 EMIF_T_DOUBLE 8

12 EMIF_T_COMPLEX 8

13 EMIF_T_DCOMPLEX 16

15

integer

byte

9

byte

8

objecttype: This indicates the object type of the data. This is used in the IMAGINE Spatial Modeler. The valid

values are:

0 SCALAR. This will not normally be the case, since a scalar

has a single value.

1 TABLE: This indicates that the object is an array. The

numcolumns should be 1.

2 MATRIX: This indicates the number of rows and columns is

greater than one. This is used for Coefficient matrices, etc.

3 RASTER: This indicates that the number of rows and

columns is greater than one and the data are just a part of a

larger raster object. This would be the case for blocks of

images which are written to the file.

15

integer

byte

11

byte

10

data: This is the actual data. The number of bytes is given as:

bytecount = numrows * numcolumns * BytesPerObject

EMIF_M_INDIRECT (Indication of Indirect Data)

This is used when the following data belongs to an indirect reference of data. For example, when one object is

defined by referring to another object.

The first four bytes provide the object repeat count.

31

integer

byte

3

byte

2

byte

1

byte

0

The next four bytes provide the file pointer which points to the data comprising the object.

31

integer

byte

7

byte

6

byte

5

byte

4

EMIF_M_PTR (Indication of Indirect Data)

This is used when the following data belong to an indirect reference of data of variable length. For example,

when one object is defined by referring to another object. This is identical in file format to the

EMIF_M_INDIRECT element. Its main difference is in the memory resident object which gets created. In the

case of the EMIF_M_PTR the count and data pointer are placed into memory. Whereas only the data gets placed

into memory when the EMIF_M_INDIRECT element is read in. (The size of the object is inherent in the data

definitions.)

The first four bytes provide the object repeat count.

31

integer

byte

3

byte

2

byte

1

byte

0

The next four bytes provide the file pointer which points to the data comprising the object.

31

integer

byte

7

byte

6

byte

5

byte

4

MIF Data Dictionary

IMAGINE HFA files have a data dictionary that describes the contents of each of the different types of nodes.

The dictionary is a compact ASCII string which is usually placed at the end of the file. A pointer to the start of

the dictionary is stored in the header of the file.

Each object is defined like a structure in C, and consists of one or more items. Each item is composed of an

ItemType and a name. The ItemType indicates the type of data and the name indicates the name by which the

item will be known.

The syntax of the dictionary string is:

Dictionary ObjectDefinition[ObjectDefinition...].

The dictionary is one or more ObjectDefinitions

terminated by a period. This is the complete

collection of object type definitions.

ObjectDefinition { ItemDefinition[ItemDefinition...]}name,

An ObjectDefinition is an ItemDefinition

enclosed in braces {} followed by a name and

terminated by a comma. This is a complete

definition of a single object.

ItemDefinition number:[* |p]ItemType[EnumData]name,

An ItemDefinition is a number followed by a

colon, followed optionally by either an asterisk or

a p, followed by an ItemType, followed

optionally by EnumData, followed by an item

name, and terminated by a comma. This is the

complete definition of a single Item. The * and

the p both indicate that when the data are read

into memory, they will not be placed directly into

the structure being built, but that a new structure

will be allocated and filled with the data. The

pointer to that structure is placed into the initial

structure. The asterisk indicates that the number

of items in the indirect object is given by the

number in the item definition. The p indicates

that the number is variable. In both cases, the

count precedes the data in the input stream.

EnumData number:name,[<name>,...]

EnumData is a number, followed by a colon,

followed by one or more names each of which is

terminated by a comma. The number defines the

number of names which will follow. This is the

complete set of names associated with an

individual enum type.

name Any sequence of alphanumeric characters

excluding the comma.

number A positive integer number. This composed of any

sequence of these digits: 0,1,2,3,4,5,6,7,8,9.

ItemType 1|2|4|c|C|s|S|l|L |f |d|t |m|M |b|e|o|x

This is used to indicate the type of an item. The

following table indicates how the characters

correspond to one of the basic EMIF_T types.

This table describes the single character codes used to identify the ItemType in the MIF Dictionary Definition.

The Interpretation column describes the type of data indicated by the item type. The Number of Bytes column is

the number of bytes that the data type will occupy in the MIF file. If the number of bytes is not fixed, then it is

given as dynamic.

ItemType
Interpretation Number

of Bytes

1 EMIF_T_U1 1

2 EMIF_T_U2 1

4 EMIF_T_U4 1

c EMIF_T_UCHAR 1

C EMIF_T_CHAR 1

e EMIF_T_ENUM. 2

s EMIF_T_USHORT 2

S EMIF_T_SHORT 2

t EMIF_T_TIME 4

l EMIF_T_ULONG 4

L EMIF_T_LONG 4

f EMIF_T_FLOAT 4

d EMIF_T_DOUBLE 8

m EMIF_T_COMPLEX 8

M EMIF_T_DCOMPLEX 16

b EMIT_T_BASEDATA dynamic

o Previously defined object. This

indicates that the description of the

following data has been previously

defined in the dictionary. This is like

using a previously defined structure in a

structure definition.

dynamic

x Defined object for this entry. This

indicates that the description of the

following data follows. This is like

using a structure definition within a

structure definition.

dynamic

HFA Object Directory

The following section defines the list of objects which comprise ERDAS IMAGINE image files (.img

extension). This is not a complete list because users and developers may create new items and add them to any

ERDAS IMAGINE file.

The image files created and used by ERDAS IMAGINE are stored in a hierarchical file architecture (HFA). This

format allows any number of different types of data elements to be stored in the file in a tree structured fashion.

This tree is built of nodes which contain a variety of types of data. The contents of the nodes (as well as the

structural information) is saved in the file in a machine independent format (MIF) which allows the files to be

shared between computers of differing architectures.

Hierarchical File Architecture

The hierarchical file architecture maintains an object−oriented representation of data in an ERDAS IMAGINE

disk file through use of a tree structure. Each object is called an entry and occupies one node in the tree. Each

object has a name and a type. The type refers to a description of the data contained by that object. Additionally

each object may contain a pointer to a subtree of more nodes. All entries are stored in MIF and can be accessed

directly by name.

Header

Dictionary Root Node

Node_1 Node_2 Node_3

Data Data

Data

Node_4 Node_5

Data

Data

Figure 8: HFA File Structure

Nodes and Objects

Each node within the HFA tree structure contains an object and each object has its own data. The types of

objects in a file are dependent upon the type of file. For example, a .img file will have different objects than an

.ovr file because these files store different types of data. The list of objects in a file is not fixed. Objects may be

added or removed depending on the data in the file (e.g., not every .img file with continuous raster layers will

have a node for ground control points).

Figure 9, below, is an example of an HFA file structure for a thematic raster layer in a .img file. If there were

more attributes in the ERDAS IMAGINE Raster Attribute Editor, then they would appear as objects under the

Descriptor Table object.

Layer_1 Eimg_Layer

Statistics
Esta_Statistics

Descriptor
Table
Edsc_Table

Projection
Eprj_Pro
Parameters

#Bin
Function#
Edsc_Bin
Function

Red
Edsc_Column

Green
Edsc_Column

Blue
Edsc_Column

Class_Names
Edsc_Column

Histogram
Edsc_Column

Figure 9: HFA File Structure Example

Pre−defined HFA File Object Types

There are three categories of pre−defined HFA File Object Types found in .img files:

♦ Basic HFA File Object Types

♦ .img Object Types

♦ External File Format Header Object Types

These sections list each object with two different detailed definitions. The first definition shows you how the

object appears in the data dictionary in the HFA file. The second definition is a table that shows you the type,

name, and description of each item in the object. An item within an object can be an element or another object.

i If an item is an element, then the item type is one of the basic types previously given with the EMIF_T_

prefix omitted. For example, the item type for EMIF_T_CHAR would be shown as CHAR.

If an item is a previously defined object type, then the type is simply the name of the previously defined item.

If the item is an array, then the number of elements is given in square brackets [n] after the type. For example,

the type for an item with an array of 16 EMIF_T_CHAR would appear as CHAR[16]. If the item is an indirect

item of fixed size (it is a pointer to an item), then the type is followed by an asterisk "*." For example, a pointer

to an item with an array of 16 EMIF_T_CHAR would appear as CHAR[16] *. If the item is an indirect item of

variable size (it is a pointer to an item and the number of items), then the type is followed by a "p." For

example, a pointer to an item with a variable sized array of characters would look like CHAR p.

i If the item type is shown as PTR, then this item will be encoded in the data dictionary as a ULONG element.

Basic Objects of an HFA File

This is a list of types of basic objects found in all HFA files:

♦ Ehfa_HeaderTag

♦ Ehfa_File

♦ Ehfa_Entry

Ehfa_HeaderTag

The Ehfa_HeaderTag is used as a unique signature at the beginning of an ERDAS IMAGINE HFA file. It must

always occupy the first 20 bytes of the file.

{16:clabel,1:lheaderPtr,}Ehfa_HeaderTag,

Type Name Description

CHAR[16] label This contains the string

"EHFA_HEADER_TAG"

PTR headerPtr The file pointer to the Ehfa_File header

record.

Ehfa_File

The Ehfa_File is composed of several main parts, including the free list, the dictionary, and the object tree. This

entry is used to keep track of these items in the file, since they may begin anywhere in the file.

{1:Lversion,1:lfreeList,1:lrootEntryPtr,1:SentryHeaderLength,1:ldictionaryPtr,}

Ehfa_File,

Type Name Description

LONG version This defines the version number of the ehfa file.

It is currently 1.

PTR freeList This points to list of freed blocks within the file.

This list is searched first whenever new space is

needed. As blocks of space are released in the

file, they are placed on the free list so that they

may be reused later.

PTR rootEntryPtr This points to the root node of the object tree.

SHORT entryHeaderLength This defines the length of the entry portion of

each node. Each node consists of two parts. The

first part is the entry which contains the node

name, node type, and parent/child information.

The second part is the data for the node.

PTR dictionaryPtr This points to the starting position of the file for

the MIF Dictionary. The dictionary must be read

and decoded before any of the other objects in

the file can be decoded.

Ehfa_Entry

The Ehfa_Entry contains the header information for each node in the object tree, including the name and type of

the node as well as the parent/child information.

{1:lnext,1:lprev,1:lparent,1:lchild,1:ldata,1LdataSize,64:cname,32:ctype,

1:tmodTime,}Ehfa_Entry,

Type Name Description

PTR next This is a file pointer which gives the location

of the next node in the tree at the current level.

If this is the last node at this level, then this

contains 0.

PTR prev This is a file pointer which gives the location

of the previous node in the tree at the current

level. If this is the first node at this level, then

this contains 0.

PTR parent This is a file pointer which gives the location

of the parent for this node. This is 0 for the

root node.

PTR child This is a file pointer which gives the location

of the first of the list of children for this node.

If there are no children, then this contains 0.

PTR data This points to the data for this node. If there is

no data for this node then it contains 0.

LONG dataSize This contains the number of bytes contained in

the data record associated with this node.

CHAR[64] name This contains a NULL terminated string that is

the name for this node. The string can be no

longer then 64 bytes including the NULL

terminator byte.

CHAR[32] type This contains a NULL terminated string which

names the type of data to be found at this node.

The type must match one of the types found in

the data dictionary. The type name can be no

longer then 32 bytes including the NULL

terminator byte.

TIME modTime This contains the time of the last modification

to the data in this node.

Objects of a .img File

This is a list of types of pre−defined objects commonly found in .img HFA files:

♦ Eimg_Layer

♦ Eimg_Layer_SubSample

♦ Eimg_NonInitializedValue

♦ Ehfa_Layer

♦ Edms_VirtualBlockInfo

♦ Edms_FreeIDList

♦ Edms_State

♦ Edsc_Table

♦ Edsc_BinFunction

♦ Edsc_Column

♦ Eded_ColumnAttributes_1

♦ Esta_Statistics

♦ Esta_Covariance

♦ Esta_SkipFactors

♦ Esta_ExcludedValues

♦ Eprj_Datum

♦ Eprj_Spheroid

♦ Eprj_ProParameters

♦ Eprj_Coordinate

♦ Eprj_Size

♦ Eprj_MapInfo

♦ Efga_Polynomial

♦ Calibration_Node

Eimg_Layer

An Eimg_Layer object is the base node for a single layer of imagery. This object describes the basic information

for the layer, including its width and height in pixels, its data type, and the width and height of the blocks used

to store the image. Other information such as the actual pixel data, map information, projection information,

etc., are stored as child objects under this node. The child objects that are usually found under the Eimg_Layer

include:

♦ RasterDMS (an Edms_State which actually contains the imagery)

♦ Descriptor_Table (an Edsc_Table object which contains the histogram and other pixel value related data)

♦ Projection (an Eprj_ProParameters object which contains the projection information)

♦ Map_Info (an Eprj_MapInfo object which contains the map information)

♦ Ehfa_Layer (an Ehfa_Layer object which describes the type of data in the layer)

{1:lwidth,1:lheight,1:e3:thematic,athematic,fft of real valued data,

layerType,1e13:u1,u2,u4,u8, s8,u16,s16,u32,s32,f32,f64,c64,c128,pixelType,

1:lblockWidth,1:lblockHeight,} Eimg_Layer,

Type Name Description

LONG width The width of the layer in pixels.

LONG height The height of the layer in pixels.

ENUM layerType The type of layer.

 0="thematic"

 1="athematic"

ENUM pixelType The type of the pixels.

0="u1"

1="u2"

2="u4"

3="u8"

4="s8"

5="u16"

6="s16"

7="u32"

8= "s32"

9="f32"

10="f64"

11="c64"

LONG blockWidth The width of each block in the layer.

LONG blockHeight The height of each block in the layer.

Eimg_Layer_SubSample

An Eimg_Layer_SubSample object is a node which contains a subsampled version of the layer defined by the

parent node. The node of this form are named _ss_2, _ss_4, _ss_8, etc. This stands for SubSampled by 2,

SubSampled by 4, etc. This node will have an Edms_State node called RasterDMS and an Ehfa_Layer node

called Ehfa_layer under it. This will be present if pyramid layers have been computed.

{1:lwidth,1:lheight,1:e3:thematic,athematic,fft of real valued data,

layerType,1e13:u1,u2,u4,u8, s8,u16,s16,u32,s32,f32,f64,c64,c128,pixelType,

1:lblockWidth,1:lblockHeight,} Eimg_Layer_SubSample,

Type Name Description

LONG width The width of the layer in pixels.

LONG height The height of the layer in pixels.

ENUM layerType The type of layer.

 0 ="thematic"

 1 ="athematic"

ENUM pixelType The type of the pixels.

0="u1"

1="u2"

2="u4"

3="u8"

4="s8"

5="u16"

6="s16"

7="u32"

8="s32"

9="f32"

10="f64"

11="c64"

12="c128"

LONG blockWidth The width of each block in the layer.

LONG blockHeight The height of each block in the layer.

Eimg_NonInitializedValue

The Eimg_NonInitializedValue object is used to record the value that is to be assigned to any uninitialized

blocks of raster data in a layer.

{1:*bvalueBD,}Eimg_NonInitializedValue,

Type Name Description

BASEDATA * valueBD A basedata structure containing the excluded

values

Ehfa_Layer

The Ehfa_Layer is used to indicate the type of layer. The initial design for the IMAGINE files allowed for both

raster and vector layers. Currently, the vector layers have not been implemented.

{1:e2:raster,vector,type,1:ldictionaryPtr,}Ehfa_Layer,

Type Name Description

ENUM type The type of layer.

0="raster"

1="vector"

ULONG dictionaryPtr This points to a dictionary entry which describes

the data. In the case of raster data, it points to a

dictionary pointer which describes the contents

of each block via the RasterDMS definition

given below.

RasterDMS

The RasterDMS object definition must be present in the EMIF dictionary pointed to by an Ehfa_Layer object

that is of type "raster". It describes the logical make−up of a block of raster data in the Ehfa_Layer. The

physical representation of the raster data is actually managed by the DMS system through objects of type

Ehfa_Layer and Edms_State. The RasterDMS definition should describe the raster data in terms of total number

of data values in a block and the type of data value.

{<n>:<t>data,}RasterDMS,

Type Name Description

<t>[<n>] data The data is described in terms of total number, <n>, of data

file values in a block of the raster layer (which is simply

<block width> * <block height>) and the data value type, <t>,

which can have any one of the following values:

1 − Unsigned 1−bit

2 − Unsigned 2−bit

4 − Unsigned 4−bit

c − Unsigned 8−bit

C − Signed 8−bit

s − Unsigned 16−bit

S − Signed 16−bit

l − Unsigned 32−bit

L − Signed 32−bit

f − Single precision floating point

d − Double precision floating point

m − Single precision complex

M − Double precision complex

Edms_VirtualBlockInfo

An Edms_VirtualBlockInfo object describes a single raster data block of a layer. It describes where to find the

data in the file, how many bytes are in the data block, and how to unpack the data from the block. For

uncompressed data the unpacking is straight forward. The scheme for compressed data is described below.

{1:SfileCode,1:loffset,1:lsize,1:e2:false,true,logvalid,1:e2:no compression,ESRI GRID

compression,compressionType,1:LblockHeight,}Edms_VirtualBlockInfo,

Type Name Description

SHORT fileCode This is included to allow expansion of the layer

into multiple files. The number indicates the file

in which the block is located. Currently this is

always 0, since the multiple file scheme has not

been implemented.

PTR offset This points to the byte location in the file where

the block data actually resides.

LONG size The number of bytes in the block.

ENUM logvalid This indicates whether the block actually

contains valid data. This allows blocks to exist in

the map, but not in the file.

0="false"

1="true"

ENUM compressionType This indicates the type of compression used for

this block.

0="no compression"

1="ESRI GRID compression"

No compression indicates that the data located at

offset are uncompressed data. The stream of

bytes is to be interpreted as a sequence of bytes

which defines the data as indicated by the data

type.

The ESRI GRID compression is a two stage

run−length encoding.

For uncompressed blocks, the data are simply packed into the block one pixel value at a time. Each pixel is read

from the block as indicated by its data type. All non−integer data are uncompressed.

The compression scheme used by ERDAS IMAGINE is a two level run−length encoding scheme. If the data are

an integral type, then the following steps are performed:

♦ The minimum and maximum values for a block are determined.

♦ The byte size of the output pixels is determined by examining the difference between the maximum and the

minium. If the difference is less than or equal to 256, then 8−bit data are used. If the difference is less than

65,536 then, 16−bit data are used, otherwise 32−bit data are used.

♦ The minimum is subtracted from each of the values.

♦ A run−length encoding scheme is used to encode runs of the same pixel value. The data minimum value

occupies the first 4 bytes of the block. The number of run−length segments occupies the next 4 bytes, and the

next 4 bytes are an offset into the block which indicates where the compressed pixel values begin. The next

byte indicates the number of bits per pixel (1,2,4,8,16,32). These four values are encoded in the standard

MIF format (ULONG). Following this is the list of segment counts, following the segment counts are the

pixel values. There is one segment count per pixel value.

i No compression scheme is used if the data are non−integral.

min num

segments

data

offset

numbits

per value

data counts data values

Each data count is encoded as follows:

next 8 bits next 8 bits next 8 bits byte

count

high 6

bits

byte 3 byte 2 byte 1 byte 0

There may be 1, 2, 3, or 4 bytes per count. The first two bits of the first count byte contains 0,1,2,3 indicating

that the count is contained in 1, 2,3, or 4 bytes. Then the rest of the byte (6 bits) represent the six most

significant bytes of the count. The next byte, if present, represents decreasing significance.

i This order is different than the rest of the package. This was done so that the high byte with the encoded byte

count would be first in the byte stream. This pattern is repeated as many times as indicated by the

numsegments field.

The data values are compressed into the remaining space packed into as many bits per pixel as indicated by the

numbitpervalue field.

Edms_FreeIDList

An Edms_FreeIDList is used to track blocks which have been freed from the layer. The freelist consists of an

array of min/max pairs which indicate unused contiguous blocks of data which lie within the allocated layer

space. Currently this object is unused and reserved for future expansion.

{1:Lmin,1:Lmax,}Edms_FreeIDList,

Type Name Description

LONG min The minimum block number in the group.

LONG max The maximum block number in the group.

Edms_State

The Edms_State describes the location of each of the blocks of a single layer of imagery. Basically, this object is

an index of all of the blocks in the layer.

{1:lnumvirtualblocks,1:lnumobjectsperblock,1:lnextobjectnum,

1:e2:no compression,RLC compression,compressionType,

0:poEdms_VirtualBlockInfo,blockinfo,0:poEdms_FreeIDList,freelist,

1:tmodTime,}Edms_State,

Type Name Description

LONG numvirtual

blocks

The number of blocks in this

layer.

LONG numobjectsper

block

The number of pixels represented

by one block.

LONG nextobjectnum Currently, this type is not being

used and is reserved for future

expansion.

ENUM compressionType This indicates the type of

compression used for this block.

0="no compression"

1="ESRI GRID compression"

No compression indicates that the

data located at offset are

uncompressed data. The stream of

bytes is to be interpreted as a

sequence of bytes which defines

the data as indicated by the data

type.

The ESRI GRID compression is a

two stage run−length encoding.

Edms_VirtualBolckInfo p blockinfo This is the table of entries which

describes the state and location of

each block in the layer.

Edms_FreeIDList p freelist Currently, this type is not being

used and is reserved for future

expansion.

TIME modTime This is the time of the last

modification to this layer.

Edsc_Table

An Edsc_Table is a base node used to store columns of information. This serves simply as a parent node for each

of the columns which are a part of the table.

{1:lnumRows,} Edsc_Table,

Type Name Description

LONG numRows This defines the number of rows in the table.

Edsc_BinFunction

The Edsc_BinFunction describes how pixel values from the associated layer are to be mapped into an index for

the columns.

{1:lnumBins,1:e4:direct,linear,logarithmic,explicit,binFunction Type,

1:dminLimit,1:dmaxLimit,1:*bbinLimits,} Edsc_BinFunction,

Type Name Description

LONG numBins The number of bins.

ENUM binFunction Type The type of bin function.

0="direct"

1="linear"

2="exponential"

3="explicit"

DOUBLE minLimit The lowest value defined by the bin function.

DOUBLE maxLimit The highest value defined by the bin function.

BASEDATA binLimits The limits used to define the bins.

The following table describes how the binning functions are used.

Bin Type Description

DIRECT Direct binning means that the pixel value minus the minimum

is used as is with no translation to index into the columns. For

example, if the minimum value is zero, then value 0 is indexed

into location 0, 1 is indexed into 1, etc.

LINEAR Linear binning means that the pixel value is first scaled by the

formula:

index = (value−minLimit)*numBins/(maxLimit−minLimit).

This allows a very large range of data, or even floating point

data, to be used to index into a table.

EXPONENTIAL Exponential binning is used to compress data with a large

dynamic range. The formula used is index =

numBins*(log(1+(value−minLimit)) / (maxLimit−minLimit).

EXPLICIT Explicit binning is used to map the data into indices using an

arbitrary set of boundaries. The data are compared against the

limits set in the binLimit table. If the pixel is less than or equal

to the first value, then the index is 0. If the pixel is less than or

equal to the next value, then the index is 1, etc.

Edsc_Column

The columns of information which are stored in a table are stored in this format.

{1:lnumRows,1:LcolumnDataPtr,1:e4:integer,real,comples,string,dataType,

1:lmaxNumChar,} Edsc_Column,

Type Name Description

LONG numRows The number of rows in this column.

PTR columnDataPtr Starting point of column data in the file. This

points to the location in the file which contains

the data.

ENUM dataType The data type of this column

0="integer" (EMIF_T_LONG)

1="real" (EMIF_T_DOUBLE)

2="complex" (EMIF_T_DCOMPLEX)

3="string" (EMIF_T_CHAR)

LONG maxNumChars The maximum string length (for string data

only). It is 0 if the type is not a String.

The types of information stored in columns are given in the following table.

Name Data Type Description

Histogram real This is found in the descriptor table of almost

every layer. It defines the number of pixels

which fall into each bin.

Class_Names string This is found in the descriptor table of almost

every thematic layer. It defines the name for

each class.

Red real This is found in the descriptor table of almost

every thematic layer. It defines the red

component of the color for each class. The range

of the value is from 0.0 to 1.0.

Green real This is found in the descriptor table of almost

every thematic layer. It defines the green

component of the color for each class. The range

of the value is from 0.0 to 1.0.

Blue real This is found in the descriptor table of almost

every thematic layer. It defines the blue

component of the color for each class. The range

of the value is from 0.0 to 1.0.

Opacity real This is found in the descriptor table of almost

every thematic layer. It defines the opacity

associated with the class. A value of 0 means

that the color will be solid. A value of 0.5 mean

that 50% of the underlying pixel would show

through, and 1.0 means that all of the pixel

value in the underlying layer would show

through.

Contrast real This is found in the descriptor table of most

continuous raster layers. It is used to define an

intensity stretch which is normally used to

improve contrast. The table is stored as

normalized values from 0.0 to 1.0.

GCP_Names string This is found in the GCP_Table in files which

have ground control points. This is the table of

names for the points.

GCP_xCoords real This is found in the GCP_Table in files which

have ground control points. This is the X

coordinate for the point.

GCP_yCoords real This is found in the GCP_Table in files which

have ground control points. This is the Y

coordinate for the point.

GCP_Color string This is found in the GCP_Table in files which

have ground control points. This is the name of

the color that is used to display this point.

Eded_ColumnAttributes_1

The Eded_ColumnAttributes_1 stores the descriptor column properties which are used by the Raster Attribute

Editor for the format and layout of the descriptor column display in the Raster Attribute Editor CellArray. The

properties include the position of the descriptor column within the CellArray, the name, alignment, format, and

width of the column, whether the column is editable, the formula (if any) for the column, the units (for numeric

data), and whether the column is a component of a color column. Each Eded_ColumnAttributes_1 is a child of

the Edsc_Column containing the data for the descriptor column. The properties for a color column are stored as

a child of the Eded_ColumnAttributes_1 for the red component of the color column.

{1:lposition,0:pcname,1:e2:FALSE,TRUE,editable,

1:e3:LEFT,CENTER,RIGHT,alignment,0:pcformat,

1:e3:DEFAULT,APPLY,AUTO−APPLY,formulamode,0:pcformula,1:dcolumnwidth,

0:pcunits,1:e5:NO_COLOR,RED,GREEN,BLUE,COLOR,colorflag,0:pcgreenname,

0:pcbluename,}Eded_ColumnAttributes_1,

Type Name Description

LONG position The position of this descriptor column in the

Raster Attribute Editor CellArray. The positions

for all descriptor columns are sorted and the

columns are displayed in ascending order.

CHAR P name The name of the descriptor column. This is the

same as the name of the parent Edsc_Column

node, for all columns except color columns,

Color columns have no corresponding

Edsc_Column.

ENUM editable Specifies whether this column is editable.

0 = NO

1 = YES

ENUM alignment Alignment of this column in CellArray.

0 = LEFT

1 = CENTER

2 = RIGHT

CHAR P format The format for display of numeric data.

ENUM formulamode Mode for formula application.

0 = DEFAULT

1 = APPLY

2 = AUTO−APPLY

CHAR P formula The formula for the column.

DOUBLE columnwidth The width of the CellArray column

CHAR P units The name of the units for numeric data stored in

the column.

ENUM colorflag Indicates whether column is a color column, a

component of a color column, or a normal

column.

0 = NO_COLOR

1 = RED

2 = GREEN

3 = BLUE

4 = COLOR

CHAR P greenname Name of green component column associated

with color column. Empty string for other

column types.

CHAR P bluename Name of blue component column associated with

color column. Empty string for other column

types.

Esta_Statistics

The Esta_Statistics is used to describe the statistics for a layer.

{1:dminimum,1:dmaximum,1:dmean,1:dmedian,1d:mode,1:dstddev,}

Esta_Statistics,

Type Name Description

DOUBLE minimum The minimum of all of the pixels in the image.

This may exclude values as defined by the user.

DOUBLE maximum The maximum of all of the pixels in the image.

This may exclude values as defined by the user.

DOUBLE mean The mean of all of the pixels in the image. This

may exclude values as defined by the user.

DOUBLE median The median of all of the pixels in the image.

This may exclude values as defined by the user.

DOUBLE mode The mode of all of the pixels in the image. This

may exclude values as defined by the user.

DOUBLE stddev The standard deviation of the pixels in the

image. This may exclude values as defined by

the user.

Esta_Covariance

The Esta_Covariance object is used to record the covariance matrix for the layers in a .img file

{1:bcovariance,}Esta_Covariance,

Type Name Description

BASEDATA covariance A basedata structure containing the

covariance matrix

Esta_SkipFactors

The Esta_SkipFactors object is used to record the skip factors that were used when the statistics or histogram was

calculated for a raster layer or when the covariance was calculated for a .img file.

{1:LskipFactorX,1:LskipFactorY,}Esta_SkipFactors,

Type Name Description

LONG skipFactorX The horizontal sampling interval used for statistics

measured in image columns/sample

LONG skipFactorY The vertical sampling interval used for statistics

measured in image rows/sample

Esta_ExcludedValues

The Esta_ExcludedValues object is used to record the values that were excluded from consideration when the

statistics or histogram was calculated for a raster layer or when the covariance was calculated for a .img file.

{1:*bvalueBD,}Esta_ExcludedValues,

Type Name Description

BASEDATA * valueBD A basedata structure containing the excluded

values

Eprj_Datum

The Eprj_Datum object is used to record the datum information which is part of the projection information for a

.img file.

{0:pcdatumname,1:e3:EPRJ_DATUM_PARAMETRIC,EPRJ_DATUM_GRID,

EPRJ_DATUM_REGRESSION,type,0:pdparams,0:pcgridname,}Eprj_Datum,

Type Name Description

CHAR datumname The datum name.

ENUM type The datum type which could be one of three

different types: parametric type, grid type and

regression type.

DOUBLE params The seven parameters of a parametric datum

which describe the translations, rotations and

scale change between the current datum and the

reference datum WGS84.

CHAR gridname The name of a grid datum file which stores the

coordinate shifts among North America Datums

NAD27, NAD83 and HARN.

Eprj_Spheroid

The Eprj_Spheroid is used to describe spheroid parameters used to describe the shape of the earth.

{0:pcsphereName,1:da,1:db,1:deSquared,1:dradius,}Eprj_Spheroid,

Type Name Description

CHAR p sphereName The name of the spheroid/ellipsoid. This name is

can be found in:

<IMAGINE_HOME>/etc/spheroid.tab.

DOUBLE a The semi−major axis of the ellipsoid in meters.

DOUBLE b The semi−minor axis of the ellipsoid in meters.

DOUBLE eSquared The eccentricity of the ellipsoid, squared.

DOUBLE radius The radius of the spheroid in meters.

Eprj_ProParameters

The Eprj_Parameters is used to define the map projection for a layer.

{1:e2:EPRJ_INTERNAL,EPRJ_EXTERNAL,proType,1:lproNumber,

0:pcproExeName,0:pcproName,1:lproZone,0:pdproParams,

1:*oEprj_Spheroid,proSpheroid,}Eprj_ProParameters,

Type Name Description

ENUM proType This defines whether the projection is internal or

external.

0="EPRJ_INTERNAL"

1=" EPRJ_EXTERNAL"

LONG proNumber The projection number for internal projections.

The current internal projections are:

0="Geographic(Latitude/Longitude)"

1="UTM"

2="State Plane"

3="Albers Conical Equal Area"

4="Lambert Conformal Conic"

5="Mercator"

6="Polar Stereographic"

7="Polyconic"

8="Equidistant Conic"

9="Transverse Mercator"

10="Stereographic"

11="Lambert Azimuthal Equal−area"

12="Azimuthal Equidistant"

13="Gnomonic"

14="Orthographic"

15="General Vertical Near−Side Perspective"

16="Sinusoidal"

17="Equirectangular"

18="Miller Cylindrical"

19="Van der Grinten I"

20="Oblique Mercator (Hotine)"

21="Space Oblique Mercator"

22="Modified Transverse Mercator"

CHAR p proExeName The name of the executable to run for an external

projection.

CHAR p proName The name of the projection. This will be one of

the names given above in the description of

proNumber.

LONG proZone The zone number for internal State Plane or

UTM projections.

DOUBLE p proParams The array of parameters for the projection.

Eprj_Spheroid * proSpheroid The parameters of the spheroid used to

approximate the earth. See the description for the

Eprj_Spheroid object, above.

The following table defines the contents of the proParams array which is defined above. The Parameters column

defines the meaning of the various elements of the proParams array for the different projections. Each one is

described by one or more statements of the form n: Description. n is the index into the array.

Name Parameters

0 "Geographic(Latitude/Longitude)" None Used

1 "UTM" 3: 1=North, −1=South

2 "State Plane" 0: 0=NAD27, 1=NAD83

3 "Albers Conical Equal Area" 2: Latitude of 1st standard parallel

3: Latitude of 2nd standard parallel

4: Longitude of central meridian

5: Latitude of origin of projection

6: False Easting

7: False Northing

4 "Lambert Conformal Conic" 2: Latitude of 1st standard parallel

3: Latitude of 2nd standard parallel

4: Longitude of central meridian

5: Latitude of origin of projection

6: False Easting

7: False Northing

5 "Mercator" 4: Longitude of central meridian

5: Latitude of origin of projection

6: False Easting

7: False Northing

6 "Polar Stereographic" 4: Longitude directed straight down below pole

of map.

5: Latitude of true scale.

6: False Easting

7: False Northing.

7 "Polyconic" 4: Longitude of central meridian

5: Latitude of origin of projection

6: False Easting

7: False Northing

8 "Equidistant Conic" 2: Latitude of standard parallel (Case 0)

2: Latitude of 1st Standard Parallel (Case 1)

3: Latitude of 2nd standard Parallel (Case 1)

4: Longitude of central meridian

5: Latitude of origin of projection

6: False Easting

7: False Northing

8: 0=Case 0, 1=Case 1.

9 "Transverse Mercator" 2: Scale Factor at Central Meridian

4: Longitude of center of projection

5: Latitude of center of projection

6: False Easting

7: False Northing

10 "Stereographic" 4: Longitude of center of projection

5: Latitude of center of projection

6: False Easting

7: False Northing

11 "Lambert Azimuthal

Equal−area"

4: Longitude of center of projection

5: Latitude of center of projection

6: False Easting

7: False Northing

12 "Azimuthal Equidistant" 4: Longitude of center of projection

5: Latitude of center of projection

6: False Easting

7: False Northing

13 "Gnomonic" 4: Longitude of center of projection

5: Latitude of center of projection

6: False Easting

7: False Northing

14 "Orthographic" 4: Longitude of center of projection

5: Latitude of center of projection

6: False Easting

7: False Northing

15 "General Vertical Near−Side

Perspective

2: Height of perspective point above sphere.

4: Longitude of center of projection

5: Latitude of center of projection

6: False Easting

7: False Northing

16 "Sinusoidal" 4: Longitude of central meridian

6: False Easting

7: False Northing

17 "Equirectangular" 4: Longitude of central meridian

5: Latitude of True Scale.

6: False Easting

7: False Northing

18 "Miller Cylindrical" 4: Longitude of central meridian

6: False Easting

7: False Northing

19 "Van der Grinten I" 4: Longitude of central meridian

6: False Easting

7: False Northing

20 "Oblique Mercator (Hotine)" 2: Scale Factor at center of projection

3: Azimuth east of north for central line. (Case

1)

4: Longitude of point of origin (Case 1)

5: Latitude of point of origin.

6: False Easting

7: False Northing.

8: Longitude of 1st Point defining central line

(Case 0)

9: Latitude of 1st Point defining central line

(Case 0)

10: Longitude of 2nd Point defining central line.

(Case 0)

11: Latitude of 2nd Point defining central line

(Case 0).

12: 0=Case 0, 1=Case 1

21 "Space Oblique Mercator" 4: Landsat Vehicle ID (1−5)

5: Orbital Path Number (1−251 or 1−233)

6: False Easting

7: False Northing

22 "Modified Transverse

Mercator"

6: False Easting

7: False Northing

Eprj_Coordinate

An Eprj_Coordiante is a pair of doubles used to define X and Y.

{1:dx,1:dy,}Eprj_Coordinate,

Type Name Description

DOUBLE x The X value of the coordinate.

DOUBLE y The Y value of the coordinate.

Eprj_Size

The Eprj_Size is a pair of doubles used to define a rectangular size.

{1:dx,1:dy,}Eprj_Size,

Type Name Description

DOUBLE width The X value of the coordinate.

DOUBLE height The Y value of the coordinate.

Eprj_MapInfo

The Eprj_MapInfo object is used to define the basic map information for a layer. It defines the map coordinates

for the center of the upper left and lower right pixels, as well as the cell size and the name of the map projection.

{0:pcproName,1:*oEprj_Coordinate,upperLeftCenter,

1:*oEprj_Coordinate,lowerRightCenter,1:*oEprj_Size,pixelSize,

0:pcunits,}Eprj_MapInfo,

Type Name Description

CHAR p proName The name of the projection.

Eprj_

Coordinate *

upperLeftCenter The coordinates of the center of the upper left

pixel.

Eprj_

Coordinate *

lowerRightCenter The coordinates of the center of the lower right

pixel.

Eprj_Size * pixelSize The size of the pixel in the image.

CHAR * units The units of the above values.

Efga_Polynomial

The Efga_Polynomial is used to store transformation coefficients created by the IMAGINE GCP Editor.

{1:Lorder,1:Lnumdimtransforms,1:numdimpolynomial,1:Ltermcount,

1:*exponentList,1:bpolycoefmtx,1:bpolycoefvector,}Efga_Polynomial,

Type Name Description

LONG order The order of the polynomial.

LONG numdimtransform The number of dimensions of the

transformation (always 2).

LONG numdimpolynomial The number of dimensions of the

polynomial (always 2).

LONG termcount The number of terms in the polynomial.

LONG * exponentlist The ordered list of powers for the

polynomial.

BASEDATA polycoefmtx The polynomial coefficients.

BASEDATA polycoefvector The polynomial vectors.

Calibration_Node

An object of type Calibration_Node is an empty object it contains no data. A node of this type simply serves

as the parent node of four related child objects. The children of the Calibration_Node are used to provide

information which converts pixel coordinates to map coordinates and vice versa.There is no dictionary definition

for this object type. A node of this type will be a child of the root node and will be named "Calibration." The

"Calibration" node will have the four children described below.

Node Object Type Description

Projection Eprj_ProParameters The projection associated with the

output coordinate system.

Map_Info Eprj_MapInfo The nominal map information

associated with the

transformation.

InversePolynomial Efga_Polynomial This is the nth order polynomial

coefficient used to convert from

map coordinates to pixel

coordinates.

ForwardPolynomial Efga_Polynomial This is the nth order polynomial

used to convert from pixel

coordinates to map coordinates

External File Format Header Object Tpyes

The following sections list the types of objects found in .img HFA files that have been imported from exteral

data files:

♦ ADRG Header

♦ ADRI Header

♦ AVHRR Header

♦ DEM Header

♦ DOQ Header

♦ DTED Header

♦ MSS Header

♦ SPOT Header

♦ TM Header

ADRG Header

The following table defines the contents of the record written to an IMAGINE .img file which has been read

from an ADRG source. The fields are copied from the Volume Header file ("TRANSH01.THF") and from the

individual Distribution Rectangle (DR) headers. If the value is a string it is left unchanged. If the value is a

number it is converted from ASCII to binary. All strings are NULL terminated. The description column

indicates the source of the information. The three codes in the Description column represent the file name, field

name, and subfield names. The filename codes are THF for Transmittal Header File and GEN for General

Information File. For example, the description "THF, VDR, URF" means the URF subfield within the VDR

field within the Transmittal Header File. It is assumed that the user has access to the ADRG documents.

.

Type Name Description

CHAR

[Var.

Length]

Originator THF, VDR, VOO

Name & address of originator

CHAR[17] StockNum THF, VDR, URF

DMA stock number

SHORT VolEdNum THF, VDR, EDN

Volume edition number

TIME PubDate THF, VDR, DAT

Publication date

CHAR SecurityClassification THF, QSR, QSS

Security classification

ENUM AgencyDeterminationReqd THF, QSR, QOD

Originating agency’s determination

required

NO or YES

TIME DowngradeDate THF, QSR, DAT

Date of downgrading

CHAR

[Var.

Length]

Releasability THF, QSR, QLE

Releasability statement

CHAR

[Var.

Length]

SpecIdent THF, QUV, SRC

Specification identification for ADRG

TIME SpecDate THF, QUV, DAT

Specification date

CHAR[21] SpecAmendmentNum THF, QUV, SPA

ADRG Specification amendment number

CHAR[9] DistRectName THF, FDR, NAM

Name of the DR directory

CHAR[13] ImageName GEN

(OVERVIEW_RECORD),SPR,BAD or

GEN

(GENERAL_INFORMATION_RECORD),

SPR, BAD or

SOU,SPR,BAD

Name of the image file

ENUM ImageType Type of image

UNKNOWN, ZDR, LEGEND or

OVERVIEW

SHORT Zone GEN, GEN, ZNA

ARC Zone number

ADRI Header

The following table defines the contents of the record written to an IMAGINE .img file which has been read

from an ADRI source. The fields are copied from the Volume Header file and from the individual Distribution

Rectangle (DR) headers. If the value is a string it is left unchanged. If the value is a number it is converted from

ASCII to binary. All strings are NULL terminated. The description column indicates the source of the

information. The three codes in the Description column represent the file name, field name, and subfield names.

The file name codes are THF for Transmittal Header File, GEN for General Information File, and QAL for

Quality File. For example, the description "QAL, QUP, SPA" means the SPA subfield within the QUP (Quality

Up To Dateness) field within the Quality File. Additional comments are added when necessary to avoid

ambiguity. It is assumed that the user has access to the ADRI documentation.

.

Type Name Description

CHAR[Var. Length] Originator THF, VDR, VOO

CHAR[17] StockNum THF, VDR, URF

SHORT VolEdNum THF, VDR, EDN

TIME PubDate THF, VDR, DAT

CHAR SecurityClassification THF, QSR, QSS

ENUM AgencyDeterminationReqd THF, QSR, QOD

NO or YES

TIME DowngradeDate THF, QSR, DAT

CHAR[Var. Length] Releasability THF, QSR, QLE

CHAR[Var. Length] SpecIdent THF, QUV, SRC

TIME SpecDate THF, QUV, DAT

CHAR[21] SpecAmendmentNum THF, QUV, SPA

ENUM ImageType OVERVIEW or ZDR

CHAR[9] DistRectName Name of the DR Directory

CHAR[13] ImageName Name of the Image File

SHORT DataStructureType GEN, OVI, STR or

GEN, GEN, STR

DOUBLE DataDensityEW GEN, GEN, LOD

DOUBLE DataDensityNS GEN, GEN, LAD

SHORT DataDensityUnit GEN, GEN, UNI

DOUBLE Ulx GEN, GEN, NWO

DOUBLE Uly GEN, GEN, NWA

DOUBLE Lrx GEN, GEN, SEO

DOUBLE Lry GEN, GEN, SEA

DOUBLE Scale GEN, GEN, SCA

SHORT Zone GEN, GEN, ZNA

DOUBLE GSD GEN, GEN, PSP

ENUM Rectified GEN, GEN, IMR

NO or YES

DOUBLE Asz GEN, GEN, ARV

DOUBLE Bs GEN, GEN, BRV

CHAR[Var. Length] Text GEN, GEN, TXT

struct BandInfo

[Var. Length]

BandInfo GEN, BDF

(See BandInfo Structure

table below)

CHAR[21] EditionNumber QAL, QUP, EDN

TIME CreationDate QAL, QUP, DAT

(Creation date of ZDR)

TIME RevisionDate QAL, QUP, DAT

(Date of revision/update)

SHORT RecompilationCount QAL, QUP, REC

SHORT RevisionCount QAL, QUP, REV

CHAR[Var. Length] ADRIProduct QAL, QUP, SRC

TIME ProductSpecDate QAL, QUP, DAT

(ADRI product specification

date)

CHAR[21] ProductSpecNum QAL, QUP, SPA

TIME EarliestDate QAL, QUP, DAT

(Earliest date of source

image in DR)

TIME LatestDate QAL, QUP, DAT

(Latest date of source image

in DR)

Type Name Description

CHAR[6] BandColor GEN, BDF, BID

LONG LowerEdgeWavelength GEN, BDF, WS1

LONG UpperEdgeWavelength GEN, BDF, WS2

BandInfo Structure

AVHRR Header

The following table defines the contents of the record written to an IMAGINE .img file which has been read

from an AVHRR source. The fields are copied from the TBM and Data Set Headers. Note that not all AVHRR

files contain a TBM header, so the TBM fields may be empty or zero. TBM header fields are indicated in the

Description column by the "TBM" designation. All strings are NULL terminated. The description column

indicates the source of the information. It is assumed that the user has access to the AVHRR documentation,

"NOAA Polar Orbiter Data Users Guide."

.

Type Name Description

CHAR[45] DataSetName TBM Data Set Name

ENUM TotalCopy TBM Total Copy?

EMSC_FALSE or EMSC_TRUE

ENUM LatitudeSelected TBM Latitude select option used?

EMSC_FALSE or EMSC_TRUE

SHORT BeginningLatitude TBM Beginning Latitude

SHORT EndingLatitude TBM Ending Latitude

ENUM LongitudeSelected TBM Longitude select option used?

EMSC_FALSE or EMSC_TRUE

SHORT BeginningLongitude TBM Beginning Longitude

SHORT EndingLongitude TBM Ending Longitude

ENUM TimeSelected TBM Time select option used?

EMSC_FALSE or EMSC_TRUE

USHORT BeginningHour TBM Beginning Hour of data set

USHORT BeginningMinute TBM Beginning Minute of data

USHORT NumMinutes TBM Number of minutes in data set

ENUM AppendedData TBM Earth location data included?

ENUM[20] ChannelsSelected TBM EMSC_FALSE or

EMSC_TRUE for 20 channels

CHAR[10] SpacecraftID Satellite Name

ENUM DataType EIXM_AVHRR_DATATYPE_UNKNOWN,

EIXM_AVHRR_LAC,

EIXM_AVHRR_GAC, or

EIXM_AVHRR_HRPT

ENUM TipSource EIXM_AVHRR_TIPSOURCE_UNKNOWN,

EIXM_AVHRR_EMBEDDED_TIP,

EIXM_AVHRR_STORED_TIP, or

EIXM_AVHRR_THIRD_CDA_TIP

TIME StartTime Time code from first frame of data

processed for the data set

ULONG NumScans Number of data scans

TIME EndTime Time code from the last frame of data

processed

ULONG ProcessingBlockID Processing Block ID

UCHAR CalibrationByte Ramp/Auto Calibration field

USHORT NumDataGaps Number of data gaps

USHORT NoFrameSyncWordErrorsCount Number of input data frames with no

frame sync word errors

USHORT TipParityErrorsCount Number of DACS detected TIP parity

errors

USHORT AuxiliarySyncErrorsCount Sum of all auxiliary sync errors

detected in input data

UCHAR[2] CalibrationParameterID Identifies the calibration parameter

input data set

ENUM PseudoNoiseFlag Normal data = EMSC_FALSE,

Pseudo Noise data = EMSC_TRUE

CHAR[10] DataSource Receiving station

ENUM TapeDirection EIXM_AVHRR_TAPE_DIR_UNKNOWN,

EIXM_AVHRR_REVERSE or

EIXM_AVHRR_FORWARD

ENUM DataMode EIXM_AVHRR_DATAMODE_UNKONWN,

EIXM_AVHRR_TESTDATA or

EIXM_AVHRR_FLIGHTDATA

DEM Header

The following table defines the contents of the record written to an IMAGINE .img file which has been read

from a DEM source. The fields are copied from the Type A and Type C records. All strings are NULL

terminated. The description column indicates the source of the information. It is assumed that the user has access

to the DEM documentation.

.

Type Name Description

CHAR[41] FileName DEM quadrangle name

CHAR[41] FreeText Free format descriptor field

CHAR ProcessCode 1=GPM, 2=Manual Profile,

3=DLG2DEM, 4=DCLASS

CHAR[4] SectionalIndicato Identifies 1:100000−scale

sections

CHAR[5] MCOriginCode Mapping center origin code

SHORT DEMLevelCode DEM Level

SHORT ElevationPatternCode 1=regular, 2=random

SHORT GroundRefSystemCode 0=Geographic, 1=UTM, 2=State

Plane

SHORT Zone State Plane or UTM Zone

DOUBLE[15] ProjectionParams USGS projection parameters

SHORT PlanimetricUnitCode 0=rad, 1=ft, 2=m,

3=arc−seconds

SHORT ElevationUnitCode 1=feet, 2=meters

SHORT CoveragePolygonSides # polygon sides defining DEM

coverage

DOUBLE SWCornerX X Coordinate of SW corner

DOUBLE SWCornerY Y Coordinate of SW corner

DOUBLE NWCornerX X Coordinate of NW corner

DOUBLE NWCornerY Y Coordinate of NW corner

DOUBLE NECornerX X Coordinate of NE corner

DOUBLE NECornerY Y Coordinate of NE corner

DOUBLE SECornerX X Coordinate of SE corner

DOUBLE SECornerY Y Coordinate of SE corner

DOUBLE MinElevation Minimum coverage elevation

DOUBLE MaxElevation Maximum coverage elevation

DOUBLE RotationAngle CCW angle to local DEM

reference system

SHORT ElevationAccuracyCode 0=unknown, 1=info in Type C

record

DOUBLE SpatialResolutionX Spatial resolution in X direction

DOUBLE SpatialResolutionY Spatial resolution in Y direction

DOUBLE SpatialResolutionZ Spatial resolution in Z direction

SHORT ProfileRows Number of rows per elevation

profile

SHORT ProfileCols Number of columns per

elevation profile

SHORT LargestPrimaryContourInterval Present only if 2 or more

primary intervals exist

SHORT LargestPrimaryIntervalUnits 0=N.A., 1=feet, 2=meters

SHORT SmallestPrimaryContourInterval Smallest or only primary

contour interval

SHORT SmallestPrimaryIntervalUnits 1=feet, 2=meters

CHAR[5] DataSourceDate YYMM format

CHAR[5] DataInspRevDate YYMM format

CHAR InspectionRevisionFlag "I" or "R"

SHORT DataValidationFlag See USGS manual

SHORT SuspectVoidAreaFlag 0=none, 1=suspect areas,

2=void areas, 3=suspect and

void areas

SHORT VerticalDatum 1=local mean sea level,

2=NGVD 29, 3=NAVD 88

SHORT HorizontalDatum 1=NAD 27, 2=WGS 72,

3=WGS 84, 4=NAD 83, 5=Old

Hawaii Datum, 6=Puerto Rico

Datum, 7=NAD 83 Provisional

SHORT DataEdition Primarily DMA Specific field

SHORT DatumStatsAvailable 1=available, 0=unavailable

SHORT DatumAccuracyX In PlanimetricUnitCode units

SHORT DatumAccuracyY In PlanimetricUnitCode units

SHORT DatumAccuracyZ In ElevationUnitCode units

LONG DatumSampleSize 0=accuracy assumed to be

estimated

SHORT DemStatsAvailable 1=available, 0=unavailable

SHORT DemAccuracyX In PlanimetricUnitCode units

SHORT DemAccuracyY In PlanimetricUnitCode units

SHORT DemAccuracyZ In ElevationUnitCode units

LONG DemSampleSize 0=accuracy assumed to be

estimated

DOQ Header

The following table defines the contents of the record written to an ERDAS IMAGINE .img file which has been

read from a USGS DOQ (Digital Ortho Quadrangle) source. The fields are copied from the four DOQ header

records. All strings are NULL terminated. It is assumed that the user has access to the DOQ documentation.

Type Name Description

CHAR[39] quadrangleName Authorized quadrangle name

CHAR[3] quadrant Quadrangle quadrant (SW, NW, NE,

SE)

CHAR[3] nation1 FIPS nation code, primary nation

CHAR[3] nation2 FIPS nation code, secondary nation

CHAR[3] state1 First state in file

CHAR[3] state2 Second state in file

CHAR[3] state3 Third state in file

CHAR[3] state4 Fourth state in file

CHAR[4] state1county1 First county in first state

CHAR[4] state1county2 Second county in first state

CHAR[4] state1county3 Third county in first state

CHAR[4] state1county4 Fourth county in first state

CHAR[4] state1county5 Fifth county in first state

CHAR[4] state2county1 First county in second state

CHAR[4] state2county2 Second county in second state

CHAR[4] state2county3 Third county in second state

CHAR[4] state2county4 Fourth county in second state

CHAR[4] state2county5 Fifth county in second state

CHAR[4] state3county1 First county in third state

CHAR[4] state3county2 Second county in third state

CHAR[4] state3county3 Third county in third state

CHAR[4] state3county4 Fourth county in third state

CHAR[4] state3county5 Fifth county in third state

CHAR[4] state4county1 First county in fourth state

CHAR[4] state4county2 Second county in fourth state

CHAR[4] state4county3 Third county in fourth state

CHAR[4] state4county4 Fourth county in fourth state

CHAR[4] state4county5 Fifth county in fourth state

CHAR[24] descriptiveText Additional descriptive text

CHAR[5] producerCode Mapping center origin code

SHORT dataOrdering Direction of lines and samples

LONG numLines Number of lines (rows) in image

LONG numSamples Number of samples (columns) in image

SHORT bandTypesAndOrder Number, types, and order of bands

SHORT elevationStorage Elevation storage code

SHORT bandAndElevationStorage Method of elevation storage

SHORT verticalDatum Vertical datum used

SHORT primaryHorizDatum Primary horizontal datum

SHORT secondaryHorizDatum Secondary horizontal datum

DOUBLE rotationAngle Orthophoto rotation WRT primary

datum

SHORT groundXYRefSystem Geographic, UTM or State Plane

SHORT groundXYZone Zone number if UTM or State Plane

SHORT groundXYUnits Map units

DOUBLE[2] SWPrimaryGroundCoord Map coords of SW primary quad

corner

DOUBLE[2] NWPrimaryGroundCoord Map coords of NW primary quad

corner

DOUBLE[2] NEPrimaryGroundCoord Map coords of NE primary quad

corner

DOUBLE[2] SEPrimaryGroundCoord Map coords of SE primary quad corner

DOUBLE[6] primaryCoeff Primary transform coefficients

DOUBLE[2] primaryCentroid X and Y primary centroid

DOUBLE[2] SWSecondaryGroundCoord Map coords of SW secondary quad

corner

DOUBLE[2] NWSecondaryGroundCoord Map coords of NW secondary quad

corner

DOUBLE[2] NESecondaryGroundCoord Map coords of NE secondary quad

corner

DOUBLE[2] SESecondaryGroundCoord Map coords of SE secondary quad

corner

DOUBLE[6] secondaryCoeff Secondary transform coefficients

DOUBLE[2] secondaryCentroid X and Y secondary centroid

LONG[2] SWPrimaryInternalCoord File coords of SW primary quad corner

LONG[2] NWPrimaryInternalCoord File coords of NW primary quad

corner

LONG[2] NEPrimaryInternalCoord File coords of NE primary quad corner

LONG[2] SEPrimaryInternalCoord File coords of SE primary quad corner

LONG[2] SWSecondaryInternalCoord File coords of SW secondary quad

corner

LONG[2] NWSecondaryInternalCoord File coords of NW secondary quad

corner

LONG[2] NESecondaryInternalCoord File coords of NE secondary quad

corner

LONG[2] SESecondaryInternalCoord File coords of SE secondary quad

corner

DOUBLE[2] firstPixelPrimary Primary map coords of (1,1) file pixel

DOUBLE[2] firstPixelSecondary Secondary map coords of (1,1) file

pixel

SHORT elevationUnits DEM elevation units

FLOAT minElevation Minimum DEM elevation

FLOAT maxElevation Maximum DEM elevation

FLOAT groundResolutionX Ground X resolution of DEM

FLOAT groundResolutionY Ground Y resolution of DEM

FLOAT groundResolutionZ Ground Z resolution of DEM

FLOAT pixelResolutionX X resolution of orthophoto

FLOAT pixelResolutionY Y resolution of orthophoto

FLOAT pixelResolutionZ Z resolution of orthophoto

LONG largestPrimaryContourInterval Largest interval if DEM derived from

graphic

SHORT largestPrimaryContourIntervalUnits Units of Largest interval

LONG smallestPrimaryContourInterval Smallest interval if DEM derived from

graphic

SHORT smallestPrimaryContourIntervalUnits Units of Smallest interval

SHORT suspectAndVoidAreas Suspect and void areas in elevation or

orthophoto data

FLOAT horizDoqAccuracy RMSE of image control points for

X−Y

FLOAT verticalDoqAccuracy RMSE of primary DEM used

SHORT numDoqHorizTestPoints Number of DOQ horizontal test points

SHORT pixelProcessingAlgorithm Resampling method

CHAR[25] productionSystem Description of hardware & software

used

TIME productionDate Production date

CHAR[25] filmType Manufacturer and ID of film type

CHAR[25] sourcePhotoID Descrip. of photo, agency, roll #, etc.

SHORT mosaickedImage Number of chips composing image

ENUM leafOff Leaves off trees

FALSE or TRUE

TIME sourcePhotoDate Date of source photo

FLOAT focalLength Calibrated camera focal length in mm

LONG sourcePhotoFlyingHeight Nominal flying height of photograph

CHAR[25] scannerType Scanner description

FLOAT[2] scanningResolution (x,y) Aperture resolution, microns

FLOAT[2] scannerSamplingResolution (x,y) Sampling resolution, microns

SHORT radiometricResolution 8 or 16 bits

FLOAT resampledResolution Resampled resolution

DTED Header

The following table defines the contents of the record written to an IMAGINE .img file which has been read

from a DTED source. The fields are copied from the File Header (HDR), User Header (UHL), Data Set

Identification (DSI), and Accuracy Description (ACC) records. The description is preceded by the record

indicator from which the field was derived. All strings are NULL terminated. The description column indicates

the source of the information. It is assumed that the user has access to the DTED documentation.

.

Type Name Description

CHAR[18] FileName HDR File name

TIME CreationDate HDR Creation date of tape

TIME ExpirationDate HDR Expiration date of tape

CHAR[4] SecurityCode UHL Security Code

CHAR[13] UHL_ReferenceNumber UHL Unique reference number

SHORT MultipleAccuracy UHL 0=Single, 1=Multiple

CHAR SecurityClassification DSI Security classification code

CHAR[28] SecurityHandlingDescription DSI Security handling description

CHAR[6] SeriesDesignator DSI DMA series designator

CHAR[16] DSI_ReferenceNumber DSI Unique reference number

SHORT DataEditionNumber DSI Data edition number

CHAR MatchMergeVersion DSI Match/Merge version

CHAR[5] MaintenanceDate DSI Maintenance date (YYMM)

CHAR[5] MatchMergeDate DSI Match/Merge date (YYMM)

CHAR[9] ProducerCode DSI Producer code

CHAR[10] ProductSpecStockNum DSI Product specification stock number

SHORT ProductSpecAmendmentNum DSI Product spec. amendment number

CHAR[5] ProductSpecDate DSI Product specification date (YYMM)

CHAR[4] VerticalDatum DSI Vertical datum

CHAR[6] HorizontalDatumCode DSI Horizontal datum code

CHAR[11] DigitizingCollectionSystem DSI Digitizing collection system

CHAR[5] CompilationDate DSI Compilation date (YYMM)

DOUBLE OriginLatitude DSI Latitude of data origin

DOUBLE OriginLongitude DSI Longitude of data origin

DOUBLE SWCornerLatitude DSI Latitude of SW corner of data

DOUBLE SWCornerLongitude DSI Longitude of SW corner of data

DOUBLE NWCornerLatitude DSI Latitude of NW corner of data

DOUBLE NWCornerLongitude DSI Longitude of NW corner of data

DOUBLE NECornerLatitude DSI Latitude of NE corner of data

DOUBLE NECornerLongitude DSI Longitude of NE corner of data

DOUBLE SECornerLatitude DSI Latitude of SE corner of data

DOUBLE SECornerLongitude DSI Longitude of SE corner of data

DOUBLE OrientationAngle DSI Clockwise orientation angle of data

with respect to true north

DOUBLE LatitudeInterval DSI Latitude interval in tenths of seconds

between rows of elevation values

DOUBLE LongitudeInterval DSI Longitude interval in tenths of

seconds between rows of elevation values

SHORT NumLatitudeLines DSI Number of latitude lines

SHORT NumLongitudeLines DSI Number of longitude lines

SHORT PartialCellIndicator DSI Partial Cell Indicator

SHORT AbsoluteHorizontalAccuracy ACC Absolute horizontal accuracy of

product

SHORT AbsoluteVerticalAccuracy ACC Absolute vertical accuracy of

product

SHORT PointToPointHorizAcc ACC Point−to−Point horizontal accuracy

of product

SHORT PointToPointVertAcc ACC Point−to−Point vertical accuracy of

product

MSS Header

The following table defines the contents of the record written to an IMAGINE .img file which has been read

from a MSS source. The fields are copied from the Tape Directory (TD), Header (HDR), and Annotation (ANT)

records. The description is preceded by the record indicator from which the field was derived. All strings are

NULL terminated. The description column indicates the source of the information. It is assumed that the user

has access to the MSS documentation.

Type Name Description

CHAR MissionNum TD Byte 8

TIME TapeCreationDate TD Bytes 12−16

USHORT NumVolumes TD Byte 20

ENUM format TD Byte 31

NONE, BIL, BIP or BSQ

USHORT RecordLength TD Bytes 32−33

ENUM SourceHDT TD Byte 34

FALSE or TRUE

CHAR[19] SceneID TD Bytes 35−52

CHAR[8] WRSDesignator HDR Bytes 20−26

CHAR[4] SensorID HDR Bytes 37−39

USHORT OrbitNum HDR Bytes 47−48

USHORT[26] ActiveDetectorStatus HDR Bytes 49−52

1 = Detector is Active

USHORT ActiveDetectorCount HDR Byte 57

USHORT UncorrectedPixelsPerLine HDR Byte 58

USHORT WRSScanLineNum HDR Bytes 73−74

USHORT WRSPixelNum HDR Bytes 75−76

USHORT NumAnnotationRecords HDR Bytes 101−102

USHORT NumAncillaryRecords HDR Bytes 105−106

ENUM GeoCorrectionsApplied HDR Byte 107

FALSE or TRUE

ENUM GeoCorrectionDataPresent HDR Byte 108

FALSE or TRUE

ENUM RadiometricCorrectionsApplied HDR Byte 109

FALSE or TRUE

ENUM RadiometricCorrectionDataPresent HDR Byte 110

FALSE or TRUE

ENUM ImageDataFormat HDR Byte 117

UNKNOWN,

UNFRAMED_RECTANGULAR_IMAGE,

FRAMED_RECTANGULAR_IMAGE,

or

FRAMED_SQUARE_IMAGE

USHORT LineInterleavingCount HDR Byte 121

USHORT BitsPerPixel HDR Byte 122

ENUM ResamplingApplied HDR Byte 123

NONE,

CUBIC_CONVOLUTION or

NEAREST_NEIGHBOR

SHORT WRSImageCenterOffset HDR Byte 125−126

USHORT PixelsPerScanLine HDR Byte 131−132

USHORT NumUsableImages HDR Byte 135

USHORT NumTrailerRecords HDR Byte 144−145

ENUM DayPass HDR Byte 151

FALSE (Night pass) or

TRUE (Day pass)

ENUM CalWedgeMode HDR Byte 162

UNKNOWN,

LOW_GAIN_LINEAR_TRANSMISSION,

LOW_GAIN_COMPRESSED_TRANSMISSION,

HIGH_GAIN_LINEAR_TRANSMISSION,

HIGH_GAIN_COMPRESSED_TRANSMISSION

USHORT TempRegPt1CurImgScanLine HDR Bytes 183−184

USHORT TempRegPt1CurImgPixelNum HDR Bytes 185−186

USHORT TempRegPt1RefImgScanLine HDR Bytes 187−188

USHORT TempRegPt1RefImgPixelNum HDR Bytes 189−190

USHORT TempRegPt2CurImgScanLine HDR Bytes 191−192

USHORT TempRegPt2CurImgPixelNum HDR Bytes 193−194

USHORT TempRegPt2RefImgScanLine HDR Bytes 195−196

USHORT TempRegPt2RefImgPixelNum HDR Bytes 197−198

USHORT TempRegPt3CurImgScanLine HDR Bytes 199−200

USHORT TempRegPt3CurImgPixelNum HDR Bytes 201−202

USHORT TempRegPt3RefImgScanLine HDR Bytes 203−204

USHORT TempRegPt3RefImgPixelNum HDR Bytes 205−206

USHORT TempRegPt4CurImgScanLine HDR Bytes 207−208

USHORT TempRegPt4CurImgPixelNum HDR Bytes 209−210

USHORT TempRegPt4RefImgScanLine HDR Bytes 211−212

USHORT TempRegPt4RefImgPixelNum HDR Bytes 213−214

USHORT OverlapMark1ScanLine HDR Bytes 215−216

USHORT OverlapMark1PixelNum HDR Bytes 217−218

USHORT OverlapMark2ScanLine HDR Bytes 219−220

USHORT OverlapMark2PixelNum HDR Bytes 221−222

USHORT OverlapMark3ScanLine HDR Bytes 223−224

USHORT OverlapMark3PixelNum HDR Bytes 225−226

USHORT OverlapMark4ScanLine HDR Bytes 227−228

USHORT OverlapMark4PixelNum HDR Bytes 229−230

USHORT OverlapMarkPixelOffset HDR Byte 231

USHORT GeoModelQualityAssessment HDR Byte 232

USHORT NumTickMarksTop HDR Byte 233

USHORT NumTickMarksLeft HDR Byte 234

USHORT NumTickMarksRight HDR Byte 235

USHORT NumTickMarksBottom HDR Byte 236

ENUM EdipsContrastEnhancement HDR Byte 3583

FALSE or TRUE

ENUM EdipsAtmScatterCompensation HDR Byte 3584

FALSE or TRUE

ENUM EdipsEdgeEnhancement HDR Byte 3585

FALSE or TRUE

USHORT[8] DataPresentByBand HDR Byte 3586

1 = Data Present

FLOAT FormatCenterLatitude ANT Bytes 17−22

FLOAT FormatCenterLongitude ANT Bytes 24−31

CHAR[10] NominalPathRowID ANT Bytes 32−40

FLOAT NominalLatitude ANT Bytes 43−48

FLOAT NominalLongitude ANT Bytes 50−57

CHAR[8] SpectralBandIDCode ANT Bytes 58−64

ENUM TransmissionType ANT Byte 66

UNKNOWN, DIRECT or

STORED_PLAYBACK

CHAR[15] SunAngles ANT Bytes 68−81

ENUM CorrectionType ANT Byte 82

NONE,

SYSTEM_CORRECTION,

GEOMETRIC_GCP_CORRECTION,

or

RELATIVE_GCP_CORRECTION

CHAR[16] ImageScale ANT Byte 83

"185 km x 185 km",

" 99 km x 99 km", or

"185 km x 170 km"

Eixm_Mss−

MapProjection

MapProjection ANT Byte 84

NONE, UTM,

POLAR_STEREOGRAPHIC,

HOTINE_OBLIQUE_MERCATOR,

SPACE_OBLIQUE_MERCATOR,

or

LAMBERT

ENUM EphemerisType ANT Byte 87

UNKNOWN,

PREDICTIVE, or

DEFINITIVE

ENUM ProcessingProcedure ANT Byte 89

UNKNOWN, ABNORMAL, or

NORMAL

ENUM SensorGain ANT Byte 91

UNKNOWN, HIGH_GAIN or

LOW_GAIN

CHAR[14] AgencyProject ANT Bytes 94−106

CHAR[16] FrameID ANT Bytes 107−121

struct

TickMark[16]

TopTickMark ANT Bytes 405−548

See TickMark Structure table below.

struct

TickMark[25]

LeftTickMark ANT Bytes 803−964

See TickMark Structure table below.

struct

TickMark[25]

RightTickMark ANT Bytes 1201−1263

See TickMark Structure table below.

struct

TickMark[16]

BottomTickMark ANT Bytes 1599−1760

See TickMark Structure table below.

Type Name Description

USHORT position Number of pixels from top or left side

CHAR[8] label Tick Mark Label

TickMark Structure

SPOT Header

The following table defines the contents of the record written to an IMAGINE .img file which has been read

from a SPOT source. The fields are copied from the SPOT Level 1A, 1B, and 2 headers,

SPOTVIEW/GEOSPOT (GIS) headers, and the Canadian SPOT (RADARSAT) headers. If the value is a string,

it is left unchanged. If the value is a number, it is converted from ASCII to binary. The description column

indicates the source of the information. It is assumed that the user has access to the various SPOT

documentation.

MAX_INT: Maximum integer. It is the default uninitialized value for certain fields.

MAX_DBL: Maximum double. It is the default uninitialized value for certain fields.

SP: SPOT Level 1A, 1B, and 2.

SV: SPOTVIEW 1.5 (GIS format).

GS: GEOSPOT 4.0 (GIS format).1

CS: Canadian SPOT.2

1. GIS−GEOSPOT Format Reference Manual

2. Canadian SPOT documentation (RADARSAT).

⊕ The Canadian SPOT header fields are not completely defined in this document. This will be completed in a

future edition of On−Line Help.

struct SpotHeader

Type Name Description

CHAR[15] scnname SP: based on Fields 13 and 14 of file 2 record

1.

SV: This field is empty.

GS: This field is empty.

CS:

DOUBLE scncenlat SP: Field 13 of file 2 record 2.

SV: This field is 0.0.

GS: This field is 0.0.

CS:

DOUBLE scncenlon SP: Field 14 of file 2 record 2.

SV: This field is 0.0.

GS: This field is 0.0.

CS:

DOUBLE scncor1lat SP: Field 17 of file 2 record 2.

SV: This field is 0.0.

GS: tag NW_LAT in REP header file.

CS:

DOUBLE scncor1lon SP: Field 18 of file 2 record 2.

SV: This field is 0.0.

GS: tag NW_LON in REP header file.

CS:

DOUBLE scncor2lat SP: Field 21 of file 2 record 2.

SV: This field is 0.0.

GS: tag SW_LAT in REP header file.

CS:

DOUBLE scncor2lon SP: Field 22 of file 2 record 2.

SV: This field is 0.0.

GS: tag SW_LON in REP header file.

CS:

DOUBLE scncor3lat SP: Field 25 of file 2 record 2.

SV: This field is 0.0.

GS: tag NE_LAT in REP header file.

CS:

DOUBLE scncor3lon SP: Field 26 of file 2 record 2.

SV: This field is 0.0.

GS: tag NE_LON in REP header file.

CS:

DOUBLE scncor4lat SP: Field 29 of file 2 record 2.

SV: This field is 0.0.

GS: tag SE_LAT in REP header file.

CS:

DOUBLE scncor4lon SP: Field 30 of file 2 record 2.

SV: This field is 0.0.

GS: tag SE_LON in REP header file.

CS:

LONG scncenline SP: Field 15 of file 2 record 2.

SV: This field is 0.

GS: This field is 0.0.

CS:

LONG scncenpixel SP: Field 16 of file 2 record 2.

SV: This field is 0.

GS: This field is 0.0.

CS:

LONG scncor1line SP: Field 19 of file 2 record 2.

SV: This field is 0.

GS: tag NW_Y_PIXEL in HDR header file.

CS:

LONG scncor1pixel SP: Field 20 of file 2 record 2.

SV: This field is 0.

GS: tag NW_X_PIXEL in HDR header file.

CS:

LONG scncor2line SP: Field 23 of file 2 record 2.

SV: This field is 0.

GS: tag SW_Y_PIXEL in HDR header file.

CS:

LONG scncor2pixel SP: Field 24 of file 2 record 2.

SV: This field is 0.

GS: tag SW_X_PIXEL in HDR header file.

CS:

LONG scncor3line SP: Field 27 of file 2 record 2.

SV: This field is 0.

GS: tag NE_Y_PIXEL in HDR header file.

CS:

LONG scncor3pixel SP: Field 28 of file 2 record 2.

SV: This field is 0.

GS: tag NE_X_PIXEL in HDR header file.

CS:

LONG scncor4line SP: Field 31 of file 2 record 2.

SV: This field is 0.

GS: tag SE_Y_PIXEL in HDR header file.

CS:

LONG scncor4pixel SP: Field 32 of file 2 record 2.

SV: This field is 0.

GS: tag NE_X_PIXEL in HDR header file.

CS:

DOUBLE scnorientangle SP: Field 35 of file 2 record 2.

SV: This field is 0.0.

GS: This field is 0.0.

CS:

DOUBLE angleofinc SP: Field 36 of file 2 record 2.a

SV: This field is 0.0.

GS: This field is 0.0.

CS:

DOUBLE sunazimuth SP: Field 37 of file 2 record 2.

SV: This field is 0.0.

GS: This field is 0.0.

CS:

DOUBLE sunelevation SP: Field 38 of file 2 record 2.

SV: This field is 0.0.

GS: This field is 0.0.

CS:

CHAR[17] scncentime SP: Field 40 of file 2 record 2.

SV: This field is empty.

GS: This field is empty.

CS:

CHAR[4] sensorid SP: Field 42 of file 2 record 2.

SV: This field is empty.

GS: This field is empty.

CS:

CHAR[3] specmode SP: Field 43 of file 2 record 2.

SV: This field is empty.

GS: This field is empty.

CS:

LONG revolutionnum SP: Field 44 of file 2 record 2.

SV: This field is 0.

GS: This field is 0.

CS:

CHAR[2] playback SP: Field 47 of file 2 record 2.

SV: This field is empty.

GS: This field is empty.

CS:

CHAR[9] preprocesslevel SP: Field 55 of file 2 record 2.

SV: tag PRE_PROCESS_LEVEL in HDR

header file or tag CORRECTION_LEVEL in

HDR header file.

GS: tag PRE_PROCESS_LEVEL in HDR

header file or tag CORRECTION_LEVEL in

HDR header file.

CS:

ENUM correction SP: based on Field 56 of file 2 record 2.

SV: This field is EMSC_FALSE.

GS: This field is EMSC_FALSE.

CS:

LONG deconvolution SP: Field 57 of file 2 record 2.

SV: This field is 0.

GS: This field is 0.

CS:

CHAR resampling SP: Field 58 of file 2 record 2.

SV: This field is empty.

GS: This field is empty.

CS:

LONG ulxmap SP: This field is 0.

SV: tag ULXMAP from header file.

GS: tag NW_X_COORD in REP header file.

CS:

LONG ulymap SP: This field is 0.

SV: tag ULYMAP from header file.

GS: tag NW_Y_COORD in REP header file.

CS:

LONG lrxmap SP: This field is 0.

SV: tag LRXMAP from header file.

GS: tag SE_X_COORD in REP header file.

CS:

LONG lrymap SP: This field is 0.

SV: tag LRYMAP from header file.

GS: tag SE_Y_COORD in REP header file.

CS:

LONG xpixelsize SP: Field 59 of file 2 record 2.

SV: tag XDIM in HDR header file.

GS: tag XDIM in HDR header file.

CS:

LONG ypixelsize SP: Field 60 of file 2 record 2.

SV: tag YDIM in HDR header file.

GS: tag YDIM in HDR header file.

CS:

DOUBLE mapxpixelsize SP: Field 63 of file 2 record 2.

SV: tag XDIM from header file.

GS: tag XDIM in HDR header file.

CS: This field is 0.0.

DOUBLE mapypixelsize SP: Field 62 of file 2 record 2.

SV: tag YDIM from header file.

GS: tag YDIM in HDR header file.

CS: This field is 0.0.

CHAR[32] mapprojid SP: Field 61 of file 2 record 2.

SV: This field is empty.

GS: This field is empty.

CS:

LONG numcols SP: Field 50 of file 2 record 2.

SV: tag NCOLS from header file.

GS: tag NCOLS in HDR header file.

CS:

LONG numlines SP: Field 51 of file 2 record 2.

SV: tag NROWS from header file.

GS: tag NROWS in HDR header file.

CS:

LONG numbands SP: Field 9 of file 3 record 1.

SV: tag NBANDS from header file.

GS: tag NBANDS in HDR header file.

CS:

CHAR[4] interleave SP: Field 52 of file 2 record 2.

SV: This field is empty.

GS: tag LAYOUT in HDR header file.

CS:

CHAR[33] cartcoord SP: Field 72 of file 2 record 2.

SV: This field is empty.

GS: This field is empty.

CS:

CHAR[16] suncal SP: Field 79 of file 2 record 2.

SV: This field is empty.

GS: This field is empty.

CS:

CHAR[8] mapunits SP: This field is empty.

SV: tag MAPUNITS from header file.

GS: tag MAPUNITS in HDR header file.

CS:

CHAR[35] mapproj SP: This field is empty.

SV: tag PROJECTION from header file.

GS: tag PROJ_ID in REP header file.

CS:

LONG utmzone SP: This field is empty.

SV: tag UTM_ZONE from header file.

GS: tag PROJ_ZONE in REP header file.

CS:

LONG utmeast SP: This field is empty.

SV: tag UL_UTMEAST from header file.

GS: This field is MAX_INT.

CS:

LONG utmnorth SP: This field is empty.

SV: tag UL_UTMNORTH from header file.

GS: This field is MAX_INT.

CS:

LONG stplaneeast SP: This field is empty.

SV: tag UL_STPLANE_EAST from header

file.

GS: This field is MAX_INT.

CS:

LONG stplanenorth SP: This field is empty.

SV: tag UL_STPLANE_NORTH from header

file.

GS: This field is MAX_INT.

CS:

LONG stplanecode SP: This field is empty.

SV: tag ST_PROJ_CODE from header file.

GS: tag PROJ_ZONE in REP header file.

CS:

CHAR[6] hdatum SP: This field is empty.

SV: tag HORIZONTAL_DATUM or tag

DATUM from header file.

GS: tag HORIZ_DATUM in HDR header file.

CS: This field is empty.

CHAR[4] rgborder SP: Defaults to "123".

SV: tag BAND_RGB from header file.

GS: tag BAND_RBG in HDR header file.

CS: Defaults to "123".

LONG GRSk SP: Field 9 of file 2 record 2.

SV: This field is 0.

GS: This field is 0.

CS:

LONG GRSj SP: Field 9 of file 2 record 2.

SV: This field is 0.

GS: This field is 0.

CS:

DOUBLE satlongnadir SP: Field 34 of file 2 record 2.

SV: This field is 0.0.

GS: This field is 0.0.

CS:

DOUBLE satlatnadir SP: Field 33 of file 2 record 2.

SV: This field is 0.0.

GS: This field is 0.0.

CS:

CHAR[17] missionid SP: Field 68 of file 2 record 2.

SV: This field is empty.

GS: This field is empty.

CS:

DOUBLE pointingmirror SP: Field 45 of file 2 record 2.

SV: This field is 0.0.

GS: This field is 0.0.

CS:

CHAR[7] telmode SP: Field 46 of file 2 record 2.

SV: This field is empty.

GS: This field is empty.

CS:

CHAR[6] satelliteid SP: Field 41 of file 2 record 2.

SV: This field is empty.

GS: This field is empty.

CS:

DOUBLE[9] xcoord SP: Field 9 of file 2 record 3b.

SV: These fields contain 0.0s.

GS: These fields contain 0.0s.

CS:

DOUBLE[9] ycoord SP: Field 9 of file 2 record 3b.

SV: These fields contain 0.0s.

GS: These fields contain 0.0s.

CS:

DOUBLE[9] zcoord SP: Field 9 of file 2 record 3b.

SV: These fields contain 0.0s.

GS: These fields contain 0.0s.

CS:

DOUBLE[9] xvelocityvector SP: Field 9 of file 2 record 3b.

SV: These fields contain 0.0s.

GS: These fields contain 0.0s.

CS:

DOUBLE[9] yvelocityvector SP: Field 9 of file 2 record 3b.

SV: These fields contain 0.0s.

GS: These fields contain 0.0s.

CS:

DOUBLE[9] zvelocityvector SP: Field 9 of file 2 record 3b.

SV: These fields contain 0.0s.

GS: These fields contain 0.0s.

CS:

LONG[9] julianday SP: Field 9 of file 2 record 3b.

SV: These fields contain 0s.

GS: These fields contain 0s.

CS:

LONG[9] timeofday SP: Field 9 of file 2 record 3b.

SV: This field contains 0s.

GS:

CS:

CHAR[27] scenecentertime SP: Field 12 of file 2 record 3.

SV: This field is empty.

GS: This field is empty.

CS:

LONG[73] rawimageline SP: Field 14 of file 2 record 3b.

SV: These fields contain 0s.

GS: These fields contain 0s.

CS:

LONG[73] yawspeed SP: Field 14 of file 2 record 3b.

SV: These fields contain 0s.

GS: These fields contain 0s.

CS:

LONG[73] avgrollspeed SP: Field 14 of file 2 record 3b.

SV: These fields contain 0s.

GS: These fields contain 0s.

CS:

LONG[73] avgpitchspeed SP: Field 14 of file 2 record 3b.

SV: This field contains 0s.

GS:

CS:

DOUBLE[4] lookangles SP: Field 15−18 of file 2 record 3b.

SV: This field contains 0.0s.

GS:

CS:

DOUBLE[4] polynomial1 SP: Field 20 of file 2 record 3b.

SV: These fields contain 0.0s.

GS: These fields contain 0.0s.

CS:

DOUBLE[4] polynomial2 SP: Field 21 of file 2 record 3b.

SV: These fields contain 0.0s.

GS: These fields contain 0.0s.

CS:

DOUBLE[4] polynomial3 SP: Field 22 of file 2 record 3b.

SV: These fields contain 0.0s.

GS: These fields contain 0.0s.

CS:

DOUBLE[4] polynomial4 SP: Field 23 of file 2 record 3b.

SV: These fields contain 0.0s.

GS: These fields contain 0.0s.

CS:

DOUBLE[4] polynomial5 SP: Field 24 of file 2 record 3b.

SV: These fields contain 0.0s.

GS: These fields contain 0.0s.

CS:

CHAR[17] level2quality SP: Field 77 of file 2 record 2.

SV: This field is empty.

GS: This field is emtpy.

CS:

CHAR[17] dateofdarkcal SP: Field 78 of file 2 record 2.

SV: This field is empty.

GS: This field is empty.

CS:

LONG ephemerislength SP: Field 84 of file 2 record 2.

SV: This field is 0.

GS: This field is 0.

CS:

LONG ephemerisnumber SP: Field 83 of file 2 record 2.

SV: This field is 0.

GS: This field is 0.

CS:

LONG numberofgcps SP: Field 64 of file 2 record 2.

SV: This field is 0.

GS: This field is 0.

CS:

CHAR[17] GRSdesignator SP: Field 66 of file 2 record 2.

SV: This field is empty.

GS: This field is empty.

CS:

CHAR[17] referencesensorid SP: Field 69 of file 2 record 2.

SV: This field is empty.

GS: This field is empty.

CS: This field is empty.

CHAR[17] referencespecmode SP: Field 70 of file 2 record 2.

SV: This field is empty.

GS: This field is empty.

CS: This field is empty.

CHAR[17] referenceprocesslevel SP: Field 71 of file 2 record 2.

SV: This field is empty.

GS: This field is empty.

CS: See field "preprocesslevel".

LONG numberlostlines SP: Field 74 of file 2 record 2.

SV: This field is 0.0.

GS: This field is 0.0.

CS:

LONG numberlostdetectors SP: Field 75 of file 2 record 2.

SV: This field is 0.

GS: This field is 0.

CS:

CHAR[17] sceneidentification SP: Field 10 of file 2 record 2.

SV: This field is empty.

GS: This field is empty.

CS: This field is empty.

DOUBLE GRSlatdelta SP: Field 11 of file 2 record 2.

SV: This field is 0.0.

GS: This field is 0.0.

CS:

DOUBLE GRSlondelta SP: Field 12 of file 2 record 2.

SV: This field is 0.0.

GS: This field is 0.0.

CS:

LONG gainnumber SP: Field 48 of file 2 record 2.

SV: This field is 0.

GS: This field is 0.0.

CS:

DOUBLE xpixelsized See field "xpixelsize".

DOUBLE ypixelsized See field "ypixelsize".

DOUBLE urxmap SP: This field is 0.0.

SV: This field is 0.0.

GS: tag NE_X_COORD in REP header file.

CS:

DOUBLE urymap SP: This field is 0.0.

SV: This field is 0.0.

GS: tag NE_Y_COORD in REP header file.

CS:

DOUBLE llxmap SP: This field is 0.0.

SV: This field is 0.0.

GS: tag SW_X_COORD in REP header file.

CS:

DOUBLE llymap SP: This field is 0.0.

SV: This field is 0.0.

GS: tag SW_Y_COORD in REP header file.

CS:

CHAR * datum[] See field "hdatum".

struct GeoSpotHeader See GeoSpot Header Table below.

struct SpotCanHeader See Spot Canadian Header Table below.

a. First character of string is either ‘L’ or ‘R‘ depending on how satellite passed over scanned area (L = negative; R = positive)

b. Refer to the SPOT Standard CCT Format Document

GeoSpot Header Table a

Type Name Description

ENUM geospotformat SP: This field is EMSC_FALSE.

SV: This field is EMSC_TRUE.

GS: This field is EMSC_TRUE.

CS: This field is EMSC_FALSE.

CHAR * geospotversion[] SP: This field is empty.

SV: This field is "1.5".

GS: This field is empty.b

CS: This field is empty.

LONG bandrowbytes SP: This field is 0.0.

SV: tag BANDROWBYTES in header file.

GS: tag BANDROWBYTES in HDR header

file.

CS: This field is 0.0.

CHAR byteorder SP: This field is empty.

SV: tag BYTEORDER in header file.

GS: tag BYTEORDER in HDR header file.

CS: This field is empty.

LONG numbits SP: This field is 0.

SV: tag NBITS in header file.

GS: tag NBITS in HDR header file.

CS: This field is 0.

CHAR * correction_level[] See field "preprocesslevel".

DOUBLE deltax_origin SP: This field is 0.0.

SV: This field is −MAX_DBL.

GS:

CS: This field is 0.0.

DOUBLE deltay_origin SP: This field is 0.0.

SV: This field is −MAX_DBL.

GS:

CS: This field is 0.0.

CHAR * contact_info[] SP: This field is empty.

SV: This field is empty.

GS: tag CONTACT_INFO in REP header

file.

CS: This field is empty.

CHAR * easting_size_units SP: This field is empty.

SV: This field is empty.

GS: tag EASTING_SIZE argument 2 in REP

header file.

CS: This field is empty.

CHAR * northing_size_units SP: This field is empty.

SV: This field is empty.

GS: tag NORTHING_SIZE argument 2 in

REP header file.

CS: This field is empty.

DOUBLE grid_declination SP: This field is 0.0.

SV: This field is 0.0.

GS: tag GRID_DECLINATION in REP

header file.

CS: This field is 0.0.

CHAR * job_id[] SP: This field is empty.

SV: This field is empty.

GS: tag JOB_ID in REP header file.

CS: This field is empty.

CHAR * location[] SP: This field is empty.

SV: This field is empty.

GS: tag LOCATION in REP header file.

CS: This field is empty.

DOUBLE magnetic_declination SP: This field is 0.0.

SV: This field is 0.0.

GS: tag MAGNETIC_DECLINATION in

REP header file.

CS: This field is 0.0.

DOUBLE mag_decl_annual_chg SP: This field is 0.0.

SV: This field is 0.0.

GS: tag MAG_DECL_ANNUAL_CHG in

REP header file.

CS: This field is 0.0.

CHAR * mag_decl_date[] SP: This field is empty.

SV: This field is empty.

GS: tag MAG_DECL_DATE in REP header

file.

CS: This field is empty.

CHAR * map_name[] SP: This field is empty.

SV: This field is empty.

GS: tag MAP_NAME in REP header file.

CS: This field is empty.

CHAR * map_number[] SP: This field is empty.

SV: This field is empty.

GS:

CS: This field is empty.

CHAR * meridian_name[] SP: This field is empty.

SV: This field is empty.

GS: tag MERIDIAN_NAME in REP header

file.

CS: This field is empty.

DOUBLE meridian_origin SP: This field is 0.0.

SV: This field is 0.0.

GS: tag MERIDIAN_ORIGIN in REP header

file.

CS: This field is 0.0.

DOUBLE origin_x_coord SP: This field is 0.0.

SV: This field is 0.0.

GS: tag ORIGIN_X_COORD in REP header

file.

CS: This field is 0.0.

DOUBLE origin_y_coord SP: This field is 0.0.

SV: This field is 0.0.

GS: tag ORIGIN_Y_COORD in REP header

file.

CS: This field is 0.0.

CHAR * production_date[] SP: This field empty.

SV: This field is empty.

GS: tag PRODUCTION_DATE in REP

header file.

CS: This field is empty.

CHAR * product_id[] SP: This field empty.

SV: This field is empty.

GS: tag PRODUCT_ID in REP header file.

CS: This field is empty.

CHAR * proj_code[] SP: This field empty.

SV: This field is empty.

GS: tag PROJ_CODE in REP header file.

CS: This field is empty.

CHAR * proj_id[] SP: This field empty.

SV: This field is empty.

GS: tag PROJ_ID in REP header file.

CS: This field is empty.

DOUBLE proj_lat_true_scale SP: This field is 0.0.

SV: This field is 0.0.

GS: tag PROJ_LAT_TRUE_SCALE in REP

header file.

CS: This field is 0.0.

DOUBLE proj_meridian SP: This field is 0.0.

SV: This field is −MAX_DBL.

GS: tag PROJ_MERIDIAN in REP header

file.

CS: This field is 0.0.

DOUBLE proj_parallel SP: This field is 0.0.

SV: This field is −MAX_DBL.

GS: tag PROJ_PARALLEL in REP header

file.

CS: This field is 0.0.

DOUBLE proj_scale_factor SP: This field is 0.0.

SV: This field is 0.0.

GS: tag PROJ_SCALE_FACTOR in REP

header file.

CS: This field is 0.0.

DOUBLE proj_std_parallel_I SP: This field is 0.0.

SV: This field is −MAX_DBL

GS: tag PROJ_STD_PARALLEL_I in REP

header file.

CS: This field is 0.0.

DOUBLE proj_std_parallel_II SP: This field is 0.0.

SV: This field is −MAX_DBL

GS: tag PROJ_STD_PARALLEL_II in REP

header file.

CS: This field is 0.0.

LONG proj_zone SP: This field is 0.

SV: This field is 0.0.

GS: tag PROJ_ZONE in REP header file.

CS: This field is 0.

DOUBLE raster_x_origin SP: This field is 0.0.

SV: This field is 0.0.

GS: tag RASTER_X_ORIGIN in REP header

file.

CS: This field is 0.0.

DOUBLE raster_x_size SP: This field is 0.0.

SV: This field is 0.0.

GS: tag RASTER_X_SIZE in REP header

file.

CS: This field is 0.0.

DOUBLE raster_y_origin SP: This field is 0.0.

SV: This field is 0.0.

GS: tag RASTER_Y_ORIGIN in REP header

file.

CS: This field is 0.0.

DOUBLE raster_y_size SP: This field is 0.0.

SV: This field is 0.0.

GS: tag RASTER_Y_SIZE in REP header

file.

CS: This field is 0.0.

DOUBLE sheet_rect_elevation SP: This field is 0.0.

SV: This field is empty.

GS: tag SHEET_RECT_ELEVATION in

REP header file.

CS: This field is 0.0.

CHAR * sheet_rect_type[] SP: This field empty.

SV: This field is empty.

GS: tag SHEET_RECT_TYPE in REP

header file.

CS: This field is empty.

DOUBLE spheroid_flat SP: This field is 0.0.

SV: This field is 0.0.

GS: tag SPHEROID_FLAT in REP header

file.

CS: This field is 0.0.

DOUBLE spheroid_maj_axis SP: This field is 0.0.

SV: This field is 0.0.

GS: tag SPHEROID_MAJ_AXIS in REP

header file.

CS: This field is 0.0.

DOUBLE spheroid_min_axis SP: This field is 0.0.

SV: This field is 0.0.

GS: tag SPHEROID_MIN_AXIS in REP

header file.

CS: This field is 0.0.

CHAR * spheroid_name[] SP: This field empty.

SV: This field is empty.

GS: tag SPHEROID_NAME in REP header

file.

CS: This field is empty.

a. Compiled from SPOTVIEW 1.5 and GEOSPOT 4.0 documentation.

b. If geospotversion is EMSC_TRUE, an empty field implies GEOSPOT version 4.0.

Spot Canadian Header Table

Type Name Description

DOUBLE nom_interpixel_dist SP: This field is 0.0.

SV: This field is 0.0.

GS: This field is 0.0.

CS:

DOUBLE mon_interline_dist SP: This field is 0.0.

SV: This field is 0.0.

GS: This field is 0.0.

CS:

DOUBLE image_skew SP: This field is 0.0.

SV: This field is 0.0.

GS: This field is 0.0.

CS:

DOUBLE orbital_inclination SP: This field is 0.0.

SV: This field is 0.0.

GS: This field is 0.0.

CS:

DOUBLE sat_ascending_node SP: This field is 0.0.

SV: This field is 0.0.

GS: This field is 0.0.

CS:

DOUBLE sat_altitude SP: This field is 0.0.

SV: This field is 0.0.

GS: This field is 0.0.

CS:

DOUBLE sat_ground_speed SP: This field is 0.0.

SV: This field is 0.0.

GS: This field is 0.0.

CS:

DOUBLE satellite_heading SP: This field is 0.0.

SV: This field is 0.0.

GS: This field is 0.0.

CS:

DOUBLE satellite_latitude SP: This field is 0.0.

SV: This field is 0.0.

GS: This field is 0.0.

CS:

DOUBLE satellite_longitude SP: This field is 0.0.

SV: This field is 0.0.

GS: This field is 0.0.

CS:

DOUBLE acrosstrackFOV SP: This field is 0.0.

SV: This field is 0.0.

GS: This field is 0.0.

CS:

DOUBLE semi_major_axis SP: This field is 0.0.

SV: This field is 0.0.

GS: This field is 0.0.

CS:

DOUBLE[16] bandgain SP: These fields contain 0.0s.

SV: These fields contain 0.0s.

GS: These fields contain 0.0s.

CS:

ENUM LGSOWG SP: This field is EMSC_FALSE.

SV: This field is EMSC_FALSE.

GS: This field is EMSC_FALSE.

CS: This field is EMSC_TRUE.

TM Header

The following table defines the contents of the record written to an IMAGINE .img file which has been read

from a Landsat source. The fields are copied from the TM Fast Format headers. If the value is a string it is left

unchanged. If the value is a number it is converted from ASCII to binary. All strings are NULL terminated. The

description column indicates the source of the information. The term FF indicates the EOSAT Fast Format

Header, and the term SF indicates EOSAT Standard Format Header, it is assumed that the user has access to the

EOSAT documents.

SF: "Landsat Technical Working Group (LTWG)"

FF: "EOSAT Fast Format Document for TM Digital Products, Version B"

Type Name Description

LONG imageheight FF: Field 61.

SF: table 8 bytes237−244.

LONG imagewidth FF: Field 59.

SF: table 8 bytes 281−288

LONG numbands FF: based on Fields 94 and 35.

SF: table 5 bytes 1413−1428.

CHAR[13] eosatsceneid FF: "NO SCENEID".

SF: table 3 bytes 91−117

CHAR rev FF: Field 117.

SF: blank.

CHAR[9] acqdate FF: Field 6.

SF: blank.

CHAR[3] satellitenum FF: Field 8.

SF: blank.

CHAR[5] instrumenttype FF: Field 10.

SF: blank.

CHAR[12] productnum FF: Field 2.

SF: blank.

CHAR[15] producttype FF: Field 12.

SF: blank.

CHAR[11] productsize FF Field 14.

SF: blank.

CHAR[77] mapsheetname FF: Field 15.

SF: blank.

CHAR[4] interleaving FF: "BSQ".

SF: table 3 bytes 131−154.

CHAR[5] scenesize FF: blank.

SF: based on table 3 bytes 118−130.

CHAR[21] earthellipsoid FF: Field 51.

SF: blank.

LONG orbitalpath FF: Field 4.

SF: table 5 bytes 165−180.

LONG orbitalrow FF: Field 4.

SF: table 5 bytes 165−180.

CHAR[5] usgsprojection FF: Field 43.

SF: table 5 bytes 1557−1572.

LONG usgsprojectionnum FF: Field 45.

SF: 0.

LONG usgsmapzonenum FF: Field 47.

SF: 0.

DOUBLE pixelsize FF: Field 56.

SF: table 6 bytes 365−380.

DOUBLE[15] usgsprojparms FF: Field 49.

SF: 0.0s.

DOUBLE upperleftlong FF: Field 63.

SF: 0.0.

DOUBLE upperleftlat FF: Field 65.

SF: 0.0.

DOUBLE upperlefteasting FF: Field 67.

SF: calculated from table 5 bytes 85−100,

101−106; pixelsize, scenesize.

DOUBLE upperleftnorthing FF: Field 69.

SF: calculated from table 5 bytes 85−100,

101−106; pixelsize, scenesize.

DOUBLE upperrightlong FF: Field 71.

SF: 0.0.

DOUBLE upperrightlat FF: Field 73.

SF: 0.0.

DOUBLE upperrighteasting FF: Field 75.

SF: calculated from table 5 bytes 85−100,

101−106; pixelsize, scenesize.

DOUBLE upperrightnorthing FF: Field 77.

SF: calculated from table 5 bytes 85−100,

101−106; pixelsize, scenesize.

DOUBLE lowerrightlong FF: Field 79.

SF: 0.0.

DOUBLE lowerrightlat FF: Field 81.

SF: 0.0.

DOUBLE lowerrighteasting FF: Field 83.

SF: calculated from table 5 bytes 85−100,

101−106; pixelsize, scenesize.

DOUBLE lowerrightnorthing FF: Field 85.

SF: calculated from table 5 bytes 85−100,

101−106; pixelsize, scenesize.

DOUBLE lowerleftlong FF: Field 87.

SF: 0.0.

DOUBLE lowerleftlat FF: Field 89.

SF: 0.0.

DOUBLE lowerlefteasting FF: Field 91.

SF: calculate from table 5 bytes 85−100,

101−106; pixelsize, scenesize.

DOUBLE lowerleftnorthing FF: Field 93.

SF: calculated from table 5 bytes 85−100,

101−106; pixelsize, scenesize.

DOUBLE scenecenterlat FF: Field 107.

SF: 0.0.

DOUBLE scenecenterlong FF: Field 105.

SF: 0.0.

LONG scenecenterline FF: Field 113.

SF: table 5 bytes 85−100.

LONG scenecenterpixel FF: Field 112.

SF: table 5 bytes 101−106.

DOUBLE scenecenternorthing FF: Field 111.

SF: table 6 141−156.

DOUBLE scenecentereasting FF: Field 109.

SF: table 6 bytes 157−172.

CHAR[11] geodproctype FF: Field 17.

SF: blank.

CHAR[3] resampalgorithm FF: Field 19.

SF: table 5 bytes 1541−1556.

DOUBLE semimajoraxis FF: Field 53.

SF: 0.0.

DOUBLE semiminoraxis FF: Field 55.

SF: 0.0.

DOUBLE radgainband1 FF: Field 21.

SF: 0.0.

DOUBLE radgainband2 FF: Field 23.

SF: 0.0.

DOUBLE radgainband3 FF: Field 25.

SF: 0.0.

DOUBLE radgainband4 FF: Field 27.

SF: 0.0.

DOUBLE radgainband5 FF: Field 29.

SF: 0.0.

DOUBLE radgainband6 FF: Field 31.

SF: 0.0.

DOUBLE radgainband7 FF: Field 33.

SF: 0.0.

DOUBLE radbiasband1 FF: Field 21.

SF: 0.0.

DOUBLE radbiasband2 FF: Field 23.

SF: 0.0.

DOUBLE radbiasband3 FF: Field 25.

SF: 0.0.

DOUBLE radbiasband4 FF: Field 27.

SF: 0.0.

DOUBLE radbiasband5 FF: Field 29.

SF: 0.0.

DOUBLE radbiasband6 FF: Field 31.

SF: 0.0.

DOUBLE radbiasband7 FF: Field 33.

SF: 0.0.

CHAR[17] wrsdesignator FF: blank.

SF:

CHAR[17] wrscycle FF: blank.

SF:

LONG sunelevation FF: Field 101

LONG sunazimuth FF: Field 103

DOUBLE orientationangle FF: Field 41

DOUBLE nominterlinedist FF: 0.0.

SF: table 6 bytes 61−76.

DOUBLE nominterpixeldist FF: 0.0.

SF: table 6 bytes 45−60.

DOUBLE nomaltitude FF: 0.0.

SF: table 6 bytes 493−508.

DOUBLE nomgroundspeed FF: 0.0.

SF: table 6 bytes 509−524.

DOUBLE crosstrackFOV FF: 0.0.

SF: table 6 bytes 557−572.

DOUBLE displayrotangle FF: 0.0.

SF: table 6 bytes 445−460.

DOUBLE scenecenterheading FF: 0.0.

SF: bytes 525−540.

DOUBLE sensorscanrate FF: 0.0.

SF: table 6 bytes 573−588.

DOUBLE sensorsamplerate FF: 0.0.

SF: table 6 bytes 589−604.

DOUBLE nomorbitinclincation FF: 0.0.

SF: 0.0.

CHAR[6] datum FF: blank.

SF: blank.

LONG offset FF: Field 115.

SF: 0.0.

