
Open Inventor™
How to Write an Open Inventor File Translator

Document Number 007-2468-001

Open Inventor: How To Write An Open Inventor File Translator
Document Number 007-2468-001

CONTRIBUTORS

Written by Josie Wernecke and Eleanor Bassler
Engineering contributions by Rikk Carey and Paul Strauss

© Copyright 1994, Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/
or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

Silicon Graphics and IRIS are registered trademarks and IRIX and Open Inventor are
trademarks of Silicon Graphics, Inc. Apollo is a registered trademark of Apollo
Computer, Inc. FrameMaker is a registered trademark of Frame technology, Inc.
Hewlett-Packard is a registered trademark of Hewlett-Packard Company. IBM is a
registered trademark of International Business Machines Corporation. Macintosh is
a registered trademark of Apple Computer, Inc.

iii

Contents

1. Introduction 1
What Is in This Document? 2
Things You Need to Know about Inventor 2

Scene Database 2
Nodes and Fields 3
Node Icons 4
Scene Graphs 4
Group Nodes 5

2. Translating Files into Inventor Format 7
General Steps 7
SGO File Format 8

SGO Quadrilateral List 9
SGO Triangle List 9
SGO Triangle Mesh 10

Reading the File Header 10
Initializing the Inventor Database 11

Initializing the Database 11
Creating the Root Node 11
Setting Up Default Attributes 11

Entering the Object Read Loop 13
Writing the Database to a File 15
Complete Sample Program 16
Sample Results 24
Using the File Translator in Another Program 25

iv

Contents

3. Tips and Guidelines 27
Tips 27

Testing the Results 27
Creating an Efficient Scene Graph 28
Verifying Values 28
Automatic Normal Generation 29

Guidelines for Writing an Inventor File Translator 29
File Suffix 29
Application Name and Command Line Syntax 29
Error Handling 30
Manual Page 30
Conventions Used in Inventor Files 31

v

Figures

Figure 1-1 Exchanging 3D data between Inventor and non-Inventor
applications 1

Figure 1-2 Node icons 4
Figure 1-3 Simple scene graph 4
Figure 1-4 Example of separator groups 5
Figure 2-1 SGO file format 8
Figure 2-2 SGO quadrilateral list object 9
Figure 2-3 SGO triangle list object 10
Figure 2-4 Nodes created during initialization 12
Figure 2-5 Inventor nodes for a face set object 14
Figure 2-6 Inventor database after reading the SGO object TRILIST 14

1

Chapter 1

1. Introduction

An important feature in Open Inventor is its 3D Interchange File Format,
which provides a much-needed standard for exchanging 3D data among
applications. Inventor’s file format supports both ASCII and binary files.

• The ASCII file format is a simple, human-readable representation of a
3D scene database.

• Binary files are written in a machine-independent format. Although the
binary format is not public, tools are readily available for converting an
Inventor ASCII file to binary format.

Translator programs make possible the flow of 3D data between application
programs using Open Inventor and non-Inventor. Figure 1-1 illustrates this
data flow.

Figure 1-1 Exchanging 3D data between Inventor and non-Inventor applications

Scene

Database

Open Inventor

Non-Inventor
Applications

3D data

File Translator

ASCII or binary files

(in Open Inventor 3D
Interchange File Format)

2

Chapter 1: Introduction

Other types of data have been converging on standard formats such as TIFF,
GIF, PICT, and PostScript, but there is currently no clear winner for a
standard 3D format. Once a standard emerges, all 3D developers and users
can benefit from a common file format that allows data exchange among
members of a world-wide audience. With a shared file format, users can cut
and paste among a variety of applications on the desktop, and developers
have access to a wide range of tools and code to boost their productivity. In
addition, developers need only write one translator to and from Inventor
format, rather than a whole collection of file translators for each 3D file
format in the industry.

What Is in This Document?

This document provides the necessary basic information to enable you to
write a program that translates existing graphics files into Open Inventor
format. It includes the following sections:

• Background information on the Inventor scene database

• An example of a simple file translator

• Tips and suggestions for writing file translators

For a more complete description of Inventor objects, creating a scene
database, and applying actions, see The Inventor Mentor, Chapters 1 through
5 and Chapter 9.

Things You Need to Know about Inventor

The following paragraphs outline basic concepts of an Inventor scene
database.

Scene Database

An Inventor scene database is a collection of 3D objects and properties
arranged appropriately to represent a 3D scene or data set. Inventor
programs create or read their own copies of scene databases each time they
execute. A scene database resides in the program’s memory while the

Things You Need to Know about Inventor

3

program is running, unlike a traditional database that resides on disk and is
shared by many running programs.

Nodes and Fields

A node is an object that represents a 3D shape, property, or group. Shape
nodes represent 3D geometric objects. Property nodes represent appearance
and other qualitative characteristics of the scene. Group nodes are containers
that collect nodes into graphs. Other important nodes include camera, light,
and callback nodes.

Nodes contain both data and functions. The data elements contained in a
node are called fields. When you create a node, all the fields within that node
are created as well, and each field automatically contains a default value. For
example, a point light node contains these fields:

See the Open Inventor Nodes Quick Reference for a complete alphabetical
listing of all Inventor nodes as well as their fields and default values.

Field Default Value Meaning

on TRUE whether light is active

intensity 1.0 value between 0.0 and 1.0 (maximum illumination)

color 1.0 1.0 1.0 red, green, blue color of light

location 0.0 0.0 1.0 position in x, y, z

4

Chapter 1: Introduction

Node Icons

Figure 1-2 contains the legend for nodes used in the diagrams in this
document.

Figure 1-2 Node icons

Scene Graphs

A scene graph is an ordered collection of nodes. Hierarchical scene graphs are
created by adding nodes as children of group nodes. Figure 1-3 shows a
simple scene graph. The top node of the graph (in this figure, “top”) is called
the root node. The Inventor scene database can contain any number of scene
graphs, each consisting of a related set of 3D objects and attributes. Typically,
a 3D scene or a set of object files contains only one scene graph. However,
this is not a restriction.

Figure 1-3 Simple scene graph

Metric Topology

Separator

GroupShape

Subgraph

Transform

Appearance

top

cubexform silver

Things You Need to Know about Inventor

5

Group Nodes

A group node contains an ordered list of children that are traversed from left
to right. A separator group, shown in Figure 1-4, is a special type of group
node. Nodes under the separator group do not affect nodes in the graph after
the separator.

When you write a scene database, the objects in the database are written
from top to bottom and from left to right. Objects lower (and to the right) in
the scene graph inherit the attributes and values set by objects that precede
them. If you do not want subsequent objects to inherit certain properties or
values, use a separator group, which pushes and pops properties during
traversal (see Figure 1-4; the red material in the separator A group does not
affect the cone in the separator B group). The root node of a scene graph is
usually a separator.

Figure 1-4 Example of separator groups

root

separator Bblue
material

separator A

red
material

cone
(red) transform cone

(blue)

7

Chapter 2

2. Translating Files into Inventor Format

This section outlines a general methodology for writing an Inventor file
translator and presents a sample file translation program. The sample
program translates Silicon Graphics Object (SGO) data files into Open
Inventor files. This example is presented as one possible way to write a file
translator. There are, of course, many other possible solutions, depending on
your needs, the type of data you are working with, and the structure of the
files you are translating. Chapter 11 in The Inventor Mentor describes the
Inventor file format in great detail.

General Steps

The basic steps in an Inventor file translation program can be summarized
as follows:

1. Read and verify the file header of the input file (if applicable).

2. Initialize the Inventor database. This step includes creating the root
node or nodes of the database and setting up nodes containing any
default attributes that will be used by other nodes in the scene.

3. Enter the object read loop. Read the first object from the input file,
generate an Inventor object, and put it into the database. Continue
reading objects from the input file until all objects are read and
translated.

4. Clean up the Inventor database. Reorganize it for maximum efficiency.

5. Write the Inventor database to a file.

The following subsections discuss each step in more detail. The complete
program is shown in “Complete Sample Program” on page 16.

8

Chapter 2: Translating Files into Inventor Format

SGO File Format

Since the program example translates files from SGO file format, you’ll need
to know something about this format before you look at the example in
detail.

Figure 2-1 shows the basic structure of the SGO file format. The first word in
the file must be the SGO magic number, a code number used to identify the
file (0x5424). The magic number is 4 bytes long.

The objects in SGO files are constructed from three data types: quadrilateral
lists, triangle lists, and triangle meshes. One SGO file can contain any
number of objects of differing type. An identifying token (4 bytes) precedes
the data for each object:

The end of data token is OBJ_END (= 4). This token is placed after the data
for the last object in the file.

Figure 2-1 SGO file format

OBJ_QUADLIST (= 1) quadrilateral list

OBJ_TRILIST (= 2) triangle list

OBJ_TRIMESH (= 3) triangle mesh

SGO Magic Number (0x5424)

OBJECT TOKEN

Data

OBJECT TOKEN

Data

.

.

.

OBJ_END

*

* OBJ_QUADLIST
 OBJ_TRILIST
 or
 OBJ_TRIMESH

SGO File Format

9

SGO Quadrilateral List

Figure 2-2 shows the structure of an SGO quadrilateral list object. The object
begins with the object token, followed by the size (in 4-byte words) of the
data for this object. Next follow nine words of data for each vertex in the
object. As shown at the bottom of Figure 2-2, the first three words are the xyz
components of the normal vector at the vertex. The next three words are the
RGB color components at the vertex. The last three words are the xyz
coordinates of the vertex itself.

Figure 2-2 SGO quadrilateral list object

SGO Triangle List

Figure 2-3 shows the structure of an SGO triangle list object. The object
begins with the object token, followed by the size (in 4-byte words) of the
data for this object. Next follow nine words of data for each vertex in the
object. As shown at the bottom of Figure 2-3, the first three words are the xyz
components of the normal vector at the vertex. The next three words are the
RGB color components at the vertex. The last three words are the xyz values
of the vertex itself.

OBJ_QUADLIST

Size

v1
v2
v3
v4

1

2

n

.

.

.

*(see detail below)

vi = xn yn zn r g b x y z

10

Chapter 2: Translating Files into Inventor Format

Figure 2-3 SGO triangle list object

SGO Triangle Mesh

In the interest of brevity, the SGO triangle mesh object is not discussed in this
document or illustrated in the example.

Reading the File Header

The first step in the file translation program is to check that the header of the
input file is in the expected format. SGO files, used in our example, are
identified by a special code number, 0x5424, known as the SGO “magic
number.” If the file header does not contain the magic number, the function
returns FALSE.

static SbBool
readHeader()
{

long magic;

return (fread(&magic, sizeof(long), 1, stdin) == 1 &&
 magic == SGO_MAGIC);
}

OBJ_TRILIST

Size

v1
v2
v3

1

2

n

.

.

.

*(see detail below)

vi = xn yn zn r g b x y z

Initializing the Inventor Database

11

Initializing the Inventor Database

This step comprises three parts:

• initializing the Inventor database

• creating a root node for the database

• creating nodes with default attributes that will be used by other nodes
in the database

Initializing the Database

The following code initializes the Inventor database:

SoDB::init();

Creating the Root Node

The root node for the database is typically a separator node (see“Group
Nodes” on page 5). The root node is always referenced, as shown below. This
ensures that the root node is not accidentally deleted. In most cases, you will
use a separator as your root node. If in doubt, use a separator.

root = new SoSeparator;
root->ref();

Setting Up Default Attributes

This step involves setting up default or global attributes that are the same for
all objects in the scene graph.

SGO objects include values for normals and colors along with each index. In
Inventor, you need to specify how this information is applied to the shape
objects in the scene graph. For example, a color can be applied, or “bound,”
to an entire shape, to each face in the shape, or to each vertex in the shape.

In our example, we want the normals and materials to be bound to each
vertex in the shape object. This is termed per-vertex binding. The sample

12

Chapter 2: Translating Files into Inventor Format

program creates the following two Inventor nodes and adds them to the
scene graph:

Note: While the sample program does not translate SGO triangle mesh
objects, your program may require this translation. If so, you should note
that this object presents a special case because it lists colors and normals in
an arbitrary order and then indexes into the list. For triangle mesh objects,
you should use Inventor’s per-vertex indexed binding. When no indices are
present, this binding defaults to per-vertex binding (normals and materials
are used in order).

See The Inventor Mentor, Chapter 5, for a detailed description of binding
nodes.

Here is the code that creates the material and normal binding nodes and
specifies per-vertex binding for both nodes:

mtlBind = new SoMaterialBinding;
normBind = new SoNormalBinding;
mtlBind->value = SoMaterialBinding::PER_VERTEX;
normBind->value = SoNormalBinding::PER_VERTEX;
root->addChild(mtlBind);
root->addChild(normBind);

At this point, the Inventor database looks like Figure 2-4.

Figure 2-4 Nodes created during initialization

SoMaterialBinding tells how to bind the specified materials to the
shape node

SoNormalBinding tells how to bind the specified normals to the
shape node

root

mtlBind normBind

Entering the Object Read Loop

13

Entering the Object Read Loop

The object read loop is where the majority of the database objects are created.
This loop reads the first object from the input file. It determines which type
of object follows and calls one of three functions: readQuadList(),
readTriList(), or readTriMesh(). Then it generates Inventor nodes to
represent the corresponding data and puts those objects into the database
that was initialized in step 1. This loop continues reading objects from the
input file until all objects have been read and translated into Inventor nodes.

The SGO objects OBJ_QUADLIST and OBJ_TRILIST are translated into the
Inventor shape node SoFaceSet. The OBJ_TRIMESH object is not
implemented for this example.

As described earlier, SGO objects contain the following nine words of data
for each vertex:

• Normals (x, y, z)

• Colors (r, g, b)

• Coordinates (x, y, z)

In Inventor, each of these three sets of information is contained in a separate
node as follows:

• SoNormal - contains all vertex normals for a shape

• SoBaseColor - contains the red/green/blue values for the base color of
the vertices (An SoMaterial node could be used here, but SoBaseColor
is more efficient since only the diffuse color is changing.)

• SoCoordinate3 - contains the coordinates for the vertices

The sample program reads an SGO object, checks the number of vertices,
and then makes the appropriate amount of room in the corresponding
Inventor nodes to hold all the data for that object. Note that the SGO object
groups the normals, colors, and coordinates for each vertex. The sample
program unpacks this combined vertex data and reorganizes it into three
separate Inventor nodes (all normals for the shape go into the normal node,
all colors go into the base color node, and so on).

For example, the readQuadList() function in the sample program creates the
four Inventor nodes shown in Figure 2-5. These nodes are then added as

14

Chapter 2: Translating Files into Inventor Format

children of an SoSeparator node. The readTriList() function in the sample
program translates an SGO triangle list into the same group of nodes shown
in Figure 2-5.

Figure 2-5 Inventor nodes for a face set object

Each group of nodes (called a subgraph) is added to the database. Figure 2-6
shows the scene graph after reading the SGO object TRILIST.

Figure 2-6 Inventor database after reading the SGO object TRILIST

coord norm color faceSet

root

mtlBind normBind

coord norm color faceSet

Writing the Database to a File

15

Here is the code for the object read loop.

// Keep reading objects until we are done or we have an error
while (! endFound) {
 switch (readObjectType()) {

 case SGO_OBJ_QUADLIST:
 obj = readQuadList();
 break;

 case SGO_OBJ_TRILIST:
obj = readTriList():

 break;

 case SGO_OBJ_TRIMESH:
 // Not implemented in this example
 break;

 case SGO_OBJ_END:
 endFound = TRUE;
 break;

 default:
 error("Missing or invalid object type");
 break;
 }

 if (! endFound) {
 if (obj == NULL)
 error("Bad object data");

root->addChild(obj);
 }
}

Writing the Database to a File

Now you are ready to write the database to a file. This is the easy part:

SoWriteAction wa; // default writes in ASCII to stdout
wa.apply(root);

To write to a filename in binary:

SoWriteAction wa;
SoOutput *out = wa.getOutput();

16

Chapter 2: Translating Files into Inventor Format

if (out->openFile(filename)!=NULL) {
 out->setBinary(TRUE);
 wa.apply(root)
}

See Chapter 3, “Tips and Guidelines” for ways to test the resulting Inventor
file.

Complete Sample Program

Here is the complete sample program that translates SGO files into Open
Inventor files.

// usage: SgoToIv file.sgo > file.iv
//

#include <Inventor/SoDB.h>
#include <Inventor/actions/SoSearchAction.h>
#include <Inventor/actions/SoWriteAction.h>
#include <Inventor/nodes/SoBaseColor.h>
#include <Inventor/nodes/SoCoordinate3.h>
#include <Inventor/nodes/SoFaceSet.h>
#include <Inventor/nodes/SoMaterialBinding.h>
#include <Inventor/nodes/SoNormal.h>
#include <Inventor/nodes/SoNormalBinding.h>
#include <Inventor/nodes/SoSeparator.h>
#include <Inventor/SoPath.h>

// SGO format codes
#define SGO_MAGIC 0x5424

#define SGO_OBJ_QUADLIST 1
#define SGO_OBJ_TRILIST 2
#define SGO_OBJ_TRIMESH 3
#define SGO_OBJ_END 4
#define SGO_OBJ_ERROR (-1) /* No such object type */

#define SGO_OP_BGNTMESH 1
#define SGO_OP_SWAPTMESH 2
#define SGO_OP_ENDBGNTMESH 3
#define SGO_OP_ENDTMESH 4

Complete Sample Program

17

//
// Prints an error message to stderr and exits.
//

static void
error(const char *message)
{
 fprintf(stderr, "SgoToIv: %s\n", message);
 exit(1);
}

///
// Reads header (magic number) from file. Returns FALSE on
// error.
///

static SbBool
readHeader(FILE *file)
{
 long magic;

 return (fread(&magic, sizeof(long), 1, file)
 == 1 && magic == SGO_MAGIC);
}

///
// Reads SGO object type from file and returns it.
///

static long
readObjectType(FILE *file)
{
 long type;

 if (fread(&type, sizeof(long), 1, file) != 1)
 return SGO_OBJ_ERROR;

 return type;
}

///
// Reads N SGO vertices into the passed array of floats,
// which should be big enough to hold the data
// (N * 9 floats). Returns FALSE on a bad read.
///

static SbBool
readVertices(int numVerts, float verts[], FILE *file)

18

Chapter 2: Translating Files into Inventor Format

{
 // Read vertices (9 floats each)
 return (fread(verts, sizeof(float), numVerts * 9, file)
 == numVerts * 9);
}

///
// Reads a quadrilateral list SGO object while creating an
// Inventor graph to represent it. Returns the root of the
/ graph, or NULL if there's an error.
///

static SoNode *
readQuadList(FILE *file)
{
 long numWords;
 int numQuads, quad, vert, fieldIndex,
 vertIndex;
 float verts[36];
 SoSeparator *root;
 SoCoordinate3 *coord;
 SoNormal *norm;
 SoBaseColor *color;
 SoFaceSet *faceSet;

 fprintf(stderr, "Reading a quad list\n");

 // Read number of words in data
 if (fread(&numWords, sizeof(long), 1, file) != 1)
 return NULL;

 // There are 36 words (4 vertices of 9 words each) per
 // quadrilateral
 numQuads = (int) numWords / 36;

 // Create nodes to hold all the vertex and shape info
 coord = new SoCoordinate3;
 norm = new SoNormal;
 color = new SoBaseColor;
 faceSet = new SoFaceSet;

 // Because we know how many vertices there are, we can
 // make the appropriate amount of room in the fields of
 // the nodes.
 coord->point.setNum(4 * numQuads);
 color->rgb.setNum(4 * numQuads);
 norm->vector.setNum(4 * numQuads);
 faceSet->numVertices.setNum(numQuads);

Complete Sample Program

19

 // Process each quadrilateral
 for (quad = 0; quad < numQuads; quad++) {

 // Read 4 vertices
 if (! readVertices(4, verts, file))
 return NULL;

 // Store vertex info in fields
 for (vert = 0; vert < 4; vert++) {

 // Get index into appropriate place in field and
 // vertex
 fieldIndex = 4 * quad + vert;
 vertIndex = 9 * vert;

 norm->vector.set1Value(fieldIndex,
 &verts[vertIndex + 0]);
 color->rgb.set1Value(fieldIndex,
 &verts[vertIndex + 3]);
 coord->point.set1Value(fieldIndex,
 &verts[vertIndex + 6]);
 }

 // Store number of vertices of quadrilateral
 faceSet->numVertices.set1Value(quad, 4);
 }

 // Create a root separator to hold the subgraph. We don't
 // need to ref() it because we aren't doing anything to
 // the subgraph until it is added to the main graph
 // (after this returns).
 root = new SoSeparator(4);

 // Add the nodes to the root
 root->addChild(coord);
 root->addChild(norm);
 root->addChild(color);
 root->addChild(faceSet);

 return root;
}

///
// Reads a triangle list SGO object while creating an
// Inventor graph to represent it. Returns the root of the
// graph, or NULL if there's an error.
///

static SoNode *

20

Chapter 2: Translating Files into Inventor Format

readTriList(FILE *file)
{
 long numWords;
 int numTris, tri, vert, fieldIndex,
 vertIndex;
 float verts[27];
 SoSeparator *root;
 SoCoordinate3 *coord;
 SoNormal *norm;
 SoBaseColor *color;
 SoFaceSet *faceSet;

 fprintf(stderr, "Reading a tri list\n");

 // Read number of words in data
 if (fread(&numWords, sizeof(long), 1, file) != 1)
 return NULL;

 // There are 27 words (3 vertices of 9 words each) per
 // triangle
 numTris = (int) numWords / 27;

 // Create nodes to hold all the vertex and shape info
 coord = new SoCoordinate3;
 norm = new SoNormal;
 color = new SoBaseColor;
 faceSet = new SoFaceSet;

 // Because we know how many vertices there are, we can
 // make the appropriate amount of room in the fields of
 // the nodes.
 coord->point.setNum(3 * numTris);
 color->rgb.setNum(3 * numTris);
 norm->vector.setNum(3 * numTris);
 faceSet->numVertices.setNum(numTris);

 // Process each triangle
 for (tri = 0; tri < numTris; tri++) {

 // Read 3 vertices
 if (! readVertices(3, verts, file))
 return NULL;

 // Store vertex info in fields
 for (vert = 0; vert < 3; vert++) {

 // Get index into appropriate place in field and
 // vertex
 fieldIndex = 3 * tri + vert;

Complete Sample Program

21

 vertIndex = 9 * vert;

 norm->vector.set1Value(fieldIndex,
 &verts[vertIndex + 0]);
 color->rgb.set1Value(fieldIndex,
 &verts[vertIndex + 3]);
 coord->point.set1Value(fieldIndex,
 &verts[vertIndex + 6]);
 }

 // Store number of vertices of triangle
 faceSet->numVertices.set1Value(tri, 3);
 }

 // Create a root separator to hold the subgraph. We don't
 // need to ref() it because we aren't doing anything to
 // the subgraph until it is added to the main graph
 // (after this returns).
 root = new SoSeparator(4);

 // Add the nodes to the root
 root->addChild(coord);
 root->addChild(norm);
 root->addChild(color);
 root->addChild(faceSet);

 return root;
}

///
// Checks color values for correct range.
///

static void
verifyColors(SoNode *root)
{
 SoBaseColor *color;
 int i, j;
 SoPath *path;
 SoPathList paths;
 float r, g, b;
 const SbColor *rgb;
 SoSearchAction sa;

 sa.setType(SoBaseColor::getClassTypeId());
 sa.setInterest(SoSearchAction::ALL);
 sa.apply(root);
 paths = sa.getPaths();

22

Chapter 2: Translating Files into Inventor Format

 for (i = 0; i < paths.getLength(); i++) {
 path = paths[i];
 color = (SoBaseColor *) path->getTail();
 rgb = color->rgb.getValues(0);
 for (j = 0; j < color->rgb.getNum(); j++) {
 rgb[j].getValue(r, g, b);
 if (r < 0.0)
 r = 0.0;
 else if (r > 1.0)
 r = 1.0;
 if (g < 0.0)
 g = 0.0;
 else if (g > 1.0)
 g = 1.0;
 if (b < 0.0)
 b = 0.0;
 else if (b > 1.0)
 b = 1.0;
 color->rgb.set1Value(j, r, g, b);
 }
 }
}

///
// Mainline.
///

main(int argc, char *argv[])
{
 SbBool endFound = FALSE;
 FILE *file;
 SoSeparator *root;
 SoMaterialBinding *mtlBind;
 SoNormalBinding *normBind;
 SoNode *obj;

 // Check command line syntax and open sgo file
 if (argc != 2) {
 fprintf(stderr,
 "usage: SgoToIv file.sgo [> file.iv]\n");
 exit(1);
 }
 if ((file = fopen(argv[1], "r")) == NULL)
 error("SGO file could not be opened");

 // Initialize the Inventor database
 SoDB::init();

Complete Sample Program

23

 // Read header of SGO file and check it for validity
 if (! readHeader(file))
 error("Invalid SGO header");

 // Set up a root group to add all the objects to
 root = new SoSeparator;
 root->ref();

 // Set up per-vertex material and normal bindings
 mtlBind = new SoMaterialBinding;
 normBind = new SoNormalBinding;
 mtlBind->value = SoMaterialBinding::PER_VERTEX;
 normBind->value = SoNormalBinding::PER_VERTEX;
 root->addChild(mtlBind);
 root->addChild(normBind);

 // Keep reading objects until we are done or we have an
 // error
 while (! endFound) {

 SbBool readError = FALSE;

 switch (readObjectType(file)) {

 case SGO_OBJ_QUADLIST:
 obj = readQuadList(file);
 if (obj == NULL)
 readError = TRUE;
 break;

 case SGO_OBJ_TRILIST:
 obj = readTriList(file);
 if (obj == NULL)
 readError = TRUE;
 break;

 case SGO_OBJ_TRIMESH:
 // If triangle mesh is to be implemented,

 // include the code here.
 // Otherwise, print an error message
 fprintf(stderr, "SgoToIv: Can't process triangle
 meshes\n");
 readError = TRUE;
 break;

 case SGO_OBJ_END:
 endFound = TRUE;
 break;

24

Chapter 2: Translating Files into Inventor Format

 default:
 error("Missing or invalid object type");
 readError = TRUE;
 break;
 }

 if (! endFound) {
 if (readError)
 error("Bad object data");
 else if (obj != NULL)
 root->addChild(obj);
 }
 }

 // Verify color values
 verifyColors(root);

 // Write out the resulting graph
 SoWriteAction wa;
 wa.apply(root);

 fprintf(stderr, "sgo->iv conversion done.\n");

 return 0;
}

Sample Results

The following code shows the results of using the sample program to
translate an SGO file with one trilist object into Inventor file format.
Inventor V2.0 ascii
greetings.iv (edited down)
#

Separator {
 MaterialBinding {
 value PER_VERTEX
 }
 NormalBinding {
 value PER_VERTEX
 }
 Separator {
 Coordinate3 {
 point [-0.455535 0.0715609 0,
 -0.456693 0.0780454 0,

Using the File Translator in Another Program

25

 ...
 0.465511 0.00737759 0.0567392]
 }
 Normal {
 vector [0 0 -1,
 0 0 -1,
 ...
 -0.155748 -0.689741 0.707107]
 }
 BaseColor {
 rgb [0 0.0715609 0,
 0 0.0780454 0,
 ...
 0.465511 0.00737759 0.0567392]
 }
 FaceSet {
 numVertices [3, 3, 3, 3, 3, 3, 3, 3,
 ...
 3, 3, 3, 3, 3, 3, 3, 3]
 }
 }
}

Using the File Translator in Another Program

The following excerpt shows how you could read another file format from
within an Inventor application using an external translator program.

The program that translates the file into Inventor format is named SgoToIv.
The file being translated is myfile.sgo. The translator program writes to stdout
which has been piped via popen() to fp. Inventor’s file reader is set to read
from fp.

 FILE *fp = popen("SgoToIv myfile.sgo", "r");

 SoNode *root;
 SoInput in;
 in.setFilePointer(fp);
 if (! SoDB::read(&in, root))
 fprintf(stderr, "Read error\n");
 in.closeFile();

pclose(fp);

27

Chapter 3

3. Tips and Guidelines

This section presents tips for testing the results of your translator program,
for creating efficient scene graphs, and for verifying the file translation. It
also suggests guidelines for writing an Inventor file translator.

Tips

The following sections offer general tips for writing an Inventor file
translator.

Testing the Results

One way to test the Inventor file produced by your file translator is to
perform a read test using the ivcat command:

ivcat filename.iv

This command prints the specified Inventor file in ASCII to stdout. If there
are any syntax errors in the file, ivcat prints error messages for them. Use the
-b option to print the specified Inventor file in binary to stdout.

As the saying goes, “Seeing is believing.” Another way to test the results of
your file translator program is to use the ivview application to read your new
Inventor scene graph and display the results. To use it type:

ivview filename.iv

28

Chapter 3: Tips and Guidelines

Creating an Efficient Scene Graph

You can use ivquicken to improve the rendering performance of the scene
graphs created by your translator program. See the reference page for
ivquicken to learn more about this utility program.

You can also attempt to increase performance by having your program make
a second pass through the database, condensing redundant nodes into fewer
nodes. For example:

• If a number of nodes share the same material, for example, you can
insert a material node in the scene graph so that multiple nodes will
inherit the same material value. In the SgoToIv example program, if all
the vertices of an object have the same color, you can isolate the
material and use OVERALL material binding.

• If you are changing only the diffuse color attribute, use an Inventor
SoBaseColor node rather than an SoMaterial node (as shown in the
example program SgoToIv).

• If you know that a shape is solid or has ordered vertices, specify this
information in an SoShapeHints node. In general, the more
information you specify with SoShapeHints, the faster the rendering
speed. The exception to this rule is that when you specify ordered
vertices, but not a solid shape, rendering may be slower because
two-sided lighting is automatically turned on and backface culling is
turned off.

Verifying Values

You may also need to check the resulting Inventor scene graph to be sure that
all values fall into the appropriate range. Many SGO files, for example, have
color values that are out of range. You might want to add code that resets
colors to valid values. The verifyColors() function in the “Complete Sample
Program” in Chapter 2 provides an example of this. This code uses an
Inventor search action to locate the base color nodes in the scene graph. It
obtains the number of values in the base color node, loops through the
values, and checks them. If the value is out of range, it resets the value.

If your translator generates nodes other than base color that have color fields
(such as lights and materials), make sure their values are valid as well.

Guidelines for Writing an Inventor File Translator

29

Automatic Normal Generation

If your data does not contain normals, Inventor can generate them
automatically during rendering (but not in the file format). Inventor
generates normals automatically if DEFAULT normal binding is used and
you do not specify any normals. You can also use ivquicken to generate
normals.

Guidelines for Writing an Inventor File Translator

The following guidelines are suggested so that applications can access
Inventor translators in a consistent manner. These guidelines include

• Inventor file suffix

• application name and command line syntax

• general conventions for error handling

• manual page

File Suffix

It is recommended that .iv be used as the filename extension for Inventor
files.

Application Name and Command Line Syntax

The recommended name for the translator application is

XxxToIv or IvToXxx

where Xxx represents the name of the non-Inventor file format and Iv
represents Inventor file format.

30

Chapter 3: Tips and Guidelines

The command line syntax is:

XxxToIv filename [> filename.out]

where filename is the name of the file to be translated. By default, the output
is directed to stdout. If desired, filename can default to stdin. However, be
sure to implement the explicit filename option to guarantee compatibility
with other file translators.

Error Handling

The application should return 0 if there are no errors. It should return 1 (or
any other nonzero code) if errors occur. Error messages should be sent to
stderr.

Manual Page

Write a manual page for the translator program, in standard UNIX man page
format. Here is an example for the SgoToIv program.

SgoToIv(1) Silicon Graphics SgoToIv(1)

NAME
SgoToIv - translates an SGO object file to an Inventor file

SYNOPSIS
SgoToIv file.sgo [> file.iv]

DESCRIPTION
SgoToIv reads a single SGO file, translates to Inventor,
 and writes the result to stdout.

NOTES
SgoToIv does not handle SGO triangle meshes.

Page 1 Release 1.0 February 1994

Guidelines for Writing an Inventor File Translator

31

Conventions Used in Inventor Files

The following conventions are used by the Inventor file format.

• Τhe meter is the default unit for all data. (Use the SoUnits node to scale
to other units.)

• The positive y axis points up. The positive z axis extends towards the
viewer’s eye (out of the screen).

• Colors are expressed as red, green, blue values.

• All fields within nodes have default values. See the Open Inventor Nodes
Quick Reference for a list of these values.

• The vertices of polygons in vertex-based shapes should be specified
consistently in either clockwise or counter-clockwise order.

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-2468-001.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-965-0964

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

