CTfile Formats

December 1999

Information Systems, Inc.
© Copyright 1999 by MDL Information Systems, Inc. All rights reserved. No part of this document may be reproduced by any means except as permitted in writing by MDL Information Systems, Inc., 14600 Catalina Street, San Leandro, CA 94577.

MDL is a registered trademark of MDL Information Systems, Inc.
ISIS is a trademark of MDL Information Systems, Inc.
All other product names are trademarks or registered trademarks of their respective holders.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE

This software is provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the Govemment is subject to restrictions as set forth in subdivision (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at FAR 252.227-7013. Contractor/ Manufacturer is:

MDL Information Systems, Inc.
14600 Catalina Street
San Leandro, CA 94577

Table of Contents

Chapter 1 Introduction
Change Log 1-1
Standard CTfiles 1-2
Chapter 2 The Connection Table [CTAB]
The Counts Line 2-3
The Atom Block 2-4
The Bond Block 2-6
The Atom List Block 2-7
The Stext Block. 2-7
The Properties Block 2-8
The Properties Block for 3D Features. 2-19
3D features count line 2-21
3D features detail lines 2-21
3D data constraints 2-31
Stereo Notes 2-33
Chapter 3 Molfiles
The Header Block 3-2
Chapter 4 RGfiles
Chapter 5 SDfiles
SDfile after a CFS search 5-4
Chapter 6 Rxnfiles
Header Block 6-1
Reactants/Products 6-3
Molfile Blocks 6-3
Chapter 7 RDfiles
RDfile Header 7-2
Molecule and Reaction Identifiers 7-2
Data-field Identifier 7-3
Data 7-3
Chapter 8 Atom Limit Enhancements
Phantom Extra Atom 8-1
Superatom Attachment Point 8-2
Superatom Class 8-3
Large REGNO 8-3
Sgroup Bracket Style 8-3
Chapter $9 \quad$ Moving CTfiles On and Off the Clipboard in ISIS
Clipboard Objects 9-1
Hints on Creating a Reader/Writer For CT 9-2
Copying from the Clipboard 9-2
Copying to the clipboard 9-3
Sample Code For Copying or Pasting a CTfile in MS Windows 9-4
Chapter 10 The Extended Molfile Format
Specifications For Atom and Bond Descriptions 10-3
Conventions 10-4
The Extended Connection Table 10-5
CTAB block 10-5
Counts line 10-5
Atom block 10-6
Bond block 10-9
Link atom line 10-11
Sgroup block 10-12
3D block 10-20
The Extended Rgroup Query Molfile 10-23
Rgroup block 10-24
Rgroup logic lines 10-26

Chapter 1

Introduction

> MDL Information Systems supports a number of file formats for representation and communication of chemical information. This document describes the formats for MDL's CTfiles (chemical table files):
> - Part I (Chapters 2 through 9) describes the standard CTfile formats.
> - Part II (Chapter 10) describes the extended molfile format. All extended molfiles can be easily identified by the "V3000" version stamp in the header portion of the file. You are most likely to encounter the extended molfile format in CTfiles written from ISIS/Host or ISIS/Desktop version 2.0 or higher.

Change Log

The following are the changes in this document:
Change Page(s)
December, 1999
Updated entries in "Atom List" 2-11
December, 1998
Updated "Example of an SDfile" 5-3
August, 1998
Added STBOX field 10-9
June, 1997
Added Atom Attachment Order 2-11
Added new ATTCHORD field 10-6, 10-8

Change
October, 1996
Minor corrections
Enhanced description of connection table properties block
Added Sgroup bracket style

Page(s)

2-3, 2-8
2-8
8-3, 10-14, 10-19,

Standard CTfiles

The following figure illustrates the relationship between the various file formats described below:

molfiles

RGfiles
Molecule files: Each molfile describes a single molecular structure which can contain disjoint fragments.

Rgroup files: An RGfile describes a single molecular query with Rgroups. Each RGfile is a combination of Ctabs defining the root molecule and each member of each Rgroup in the query.
rxnfiles

SDfiles

RDfiles

Reaction files: Each rxnfile contains the structural information for the reactants and products of a single reaction. MDL currently has two types of rxnfiles: the REACCS type and the CPSS-rxnfile written by CPSS programs (CPSS-rxnfiles are not described in this document.) CPSS programs cannot read a REACCS rxnfile; however, REACCS can read and write CPSS-rxnfiles for transfer to CPSS.

Structure-data files: An SDfile contains structures and data for any number of molecules. Together with RDfiles, SDfiles are the primary format for large-scale data transfer between MDL databases.

Reaction-data files: Similar to SDfiles in concept, the RDfile is a more general format that can include reactions as well as molecules, together with their associated data. Although RDfiles are used primarily by ISIS and REACCS, MACCS-II can also read and write RDfiles except for the reaction structure information (indicated by the square brackets in Table 1-1). CPSS reads and writes RDfiles with embedded molfiles and CPSS-rxnfiles (indicated by the curly brackets in Table 1-1).
Table 1-1 shows which CTfiles MDL programs can read and write.
Table 1-1 MDL Program

CTfile Type	MACCS-II	REACCS	ISIS	CPSS
molfiles	+	+	+	+
RGiles	+		+	
rxnfiles		+	+	$\{+\}$
SDiles	+		+	+
RDfiles	$[+]$	+	+	$\{+\}$

Some of the structural and query properties described in this document are generic in their applicability, while others are peculiar to certain CTfile types (see Table 1-2). The applicability of each property is identified in subsequent chapters by the icons shown in Table 1-2.

Table 1-2 Properties and identifying icons applicable to various CTfile types

Icon	Property	molfile	RGfile	SDfile	rxnfile	RDfile
G	Generic	+	+	+	+	+
Sg	Sgroup	+	+	+		
RG	Rgroup	+	+	+		
3D	3 D	+	+	+		
CP	CPSS	+		+	+	+
Ex	Reaction				+	+
Q	Query	+	+		+	

PART I
 Standard File Formats

Chapter 2

The Connection Table [CTAB]

Cab

A connection table (Ctab) contains information describing the structural relationships and properties of a collection of atoms. The atoms may be wholly or partially connected by bonds. Such collections may, for example, describe molecules, molecular fragments, substructures, substituent groups, polymers, alloys, formulations, mixtures, and unconnected atoms. The connection table is fundamental to all of MDL's file formats.

Figure 2-1 shows the connection table of a simple molecule (alanine) with the various data blocks identified. The connection table corresponds to the following alanine molecule. The atom numbers on the structure correspond to atom numbers in the Ctab. An atom number is assigned according to the order of the atom in the Atom Block.

Figure 2-1 Connection table organization illustrated using alanine

The format for a Ctab block is:

- Counts line: Important specifications here relate to the number of atoms, bonds, and atom lists, the chiral flag setting, and the Ctab version.
- Atom block: Specifies the atomic symbol and any mass difference, charge, stereochemistry, and associated hydrogens for each atom.
- Bond block: Specifies the two atoms connected by the bond, the bond type, and any bond stereochemistry and topology (chain or ring properties) for each bond.
- Atom list block: Identifies the atom (number) of the list and the atoms in the list.
- Stext (structural text descriptor) block: Used by ISIS and CPSS programs.
- Properties block: Provides for future expandability of Ctab features, while maintaining compatibility with earlier Ctab configurations.

The detailed format for each block outlined above follows:
Note: A blank numerical entry on any line should be read as " 0 " (zero). Spaces are significant and correspond to one or more of the following:

- Absence of an entry
- Empty character positions within an entry
- Spaces between entries; single unless specifically noted otherwise

The Counts Line

a a abbbl|।fffccosssxxxrrepppiiimmmvvvvvv
Where:

aaa	= number of atoms (current max 255)*	G
bbb	= number of bonds (current max 255)*	G
III	= number of atom lists ($\max 30)^{*}$	Q
fff	= (obsolete)	
CCC	= chiral flag: 0=not chiral, 1=chiral	G
SSS	= number of stext entries	CP
xxx	= number of reaction components +1	CP
rrr	= number of reactants	CP
ppp	= number of products	CP
iii	= number of intermediates	CP
mmm	= number of lines of additional	G
	properties, including theM END line.	
	No longer supported and default set to 999	
wWWV	= Ctab version: 'V2000' or 'V3000'	G

* These limits apply to MAOCS-II, REAOCS, and the ISIS/Host Reaction Gateway, but not to the ISIS/Host Molecule Gateway or ISIS/Desktop.

For example, the counts line in the Ctab shown in Figure 2-1 shows six atoms, five bonds, the CHIRAL flag on, and three lines in the properties block:

The Atom Block

The Atom Block is made up of atom lines, one line per atom with the following format:
xxxxx, xxxxyyyyy. yyyyzzzzz.zzzz a a ddccossshhhbbbvvvHHHrrriii mmmnneee
where the values are described in Table 2-1.
Table 2-1 Meaning of values in the atom block

Field	Meaning	Values	Notes
x y z	atom coordinates		G
aaa	atom symbol	entry in periodic table or L for atom list, A, Q, * for unspecified atom, and LP for lone pair, or R\# for Rgroup label	$\begin{aligned} & \text { G } \\ & \hline \mathbf{Q} \\ & \hline \mathrm{G} \\ & \hline 3 \mathrm{D} \\ & \hline \mathrm{Bg} \end{aligned}$
dd	mass difference	$-3,-2,-1,0,1,2,3,4$ (0 if value beyond these limits)	G Difference from mass in periodic table. Wider range of values allowed by M ISOline, below. Retained for compatibility with older Ctabs, M ISOtakes precedence.
cco	charge	$0=$ uncharged or value other than these, $1=+3,2=+2,3=+1$, $4=\operatorname{doublet}(\wedge), 5=-1,6=-2,7=-3$	G Wider range of values in M CHGand M RAD lines below. Retained for compatibility with older Ctabs, M CHGand M RAD lines take precedence.
sss	atom stereo parity	$\begin{aligned} & 0=\text { not stereo, } 1=\text { odd, } 2=\text { even, } \\ & 3=\text { either or unmarked stereo center } \end{aligned}$	G Ignored when read. See stereo notes on page 2-33.
hhh	hydrogen count + 1	$\begin{aligned} & 1=\mathrm{H} 0,2=\mathrm{H} 1,3=\mathrm{H} 2,4=\mathrm{H} 3, \\ & 5=\mathrm{H} 4 \end{aligned}$	Q H0 means no H atoms allowed unless explicitly drawn. Hn means atom must have n or more H's in excess of explicit H's.
bbb	stereo care box	$0=$ ignore stereo configuration of this double bond atom, 1 = stereo configuration of double bond atom must match	Q Double bond stereochemistry is considered during SSS only if both ends of the bond are marked with stereo care boxes.

Table 2-1 Meaning of values in the atom block (Continued)

Field	Meaning	Values	Notes
v v	valence	$\begin{aligned} & 0=\text { no marking (default) } \\ & (1 \text { to } 14)=(1 \text { to } 14) 15=\text { zero valence } \end{aligned}$	G Shows number of bonds to this atom, including bonds to implied H's.
HHH	H0 designator	$0=$ not specified, $1=$ no H atoms allowed	CP Redundant with hydrogen count information. May be unsupported in future releases of MDL software.
r r \quad r	reaction component type	reactant $=1$, product $=2$, intermediate $=3$	CP
i i i	reaction component number	0 to ($\mathrm{n}-1$)	CP
mmm	atom-atom mapping number	1 - number of atoms	RX
$n \mathrm{nn}$	inversion/retention flag	$\begin{aligned} & 0=\text { property not applied } \\ & 1=\text { configuration is inverted, } \\ & 2=\text { configuration is retained, } \end{aligned}$	Rx
eee	exact change flag	$\begin{aligned} & 0=\text { property not applied, } \\ & 1=\text { change on atom must be exactly as } \\ & \text { shown } \end{aligned}$	Rx Q

Note: With Ctab version V2000, the dd and ccc fields have been superseded by the M ISO, M CHG, and M RAD lines in the properties block, described below. For compatibility, all releases since MACCS-II 2.0, REACCS 8.1, and ISIS 1.0:

- Write appropriate values in both places if the values are in the old range.
- Use the atom block fields if there are no M ISO, M CHG, or M RAD lines in the properties block.
Support for these atom block fields may be removed in future releases of MDL software.

The Bond Block

The Bond Block is made up of bond lines, one line per bond, with the following format:

111222tttsssxxyrrccc

where the values are described in Table 2-2.
Table 2-2 Meaning of values in the bond block

Field	Meaning	Values	Notes
111	first atom number	1-number of atoms	G
222	second atom number	1 - number of atoms	G
t t	bond type	$\begin{aligned} & 1=\text { Single, } 2=\text { Double, } \\ & 3=\text { Triple, } 4=\text { Aromatic, } \\ & 5=\text { Single or Double, } \\ & 6=\text { Single or Aromatic, } \\ & 7=\text { Double or Aromatic, } 8=\text { Any } \end{aligned}$	Q Values 4 through 8 are for SSS queries only.
sss	bond stereo	Single bonds: $0=$ not stereo, 1 = Up, 4 = Ether, 6 = Down, Double bonds: 0 = Use $x-, y$-, z-coords from atom block to determine cis or trans, $3=$ Cis or trans (either) double bond	G The wedge (pointed) end of the stereo bond is at the first atom (Feld 111 above)
xxx	not used		
r r ${ }^{\text {r }}$	bond topology	$0=$ Ether, $1=$ Ring, $2=$ Chain	Q SSS queries only. Rx (query only)
ccc	reacting center status	0 = unmarked, 1 = a center,	
		$-1=$ not a center, Additional: 2 = no change, 4 = bond made/broken, 8 = bond order changes $12=4+8$ (both made/broken and changes); $5=(4+1), 9=(8+1)$, and $13=(12+1)$ are also possible	

The Atom List Block a

Note: Newer programs use the M ALS item in the properties block in place of the atom list block. The atom list block is retained for compatibility, but information in an M ALS item supersedes atom list block information.

Made up of atom list lines, one line per list, with the following format:

```
aaa kSSSSn 111 222 333 444 555
```

where:
aaa = number of atom (L) where list is attached
k
$=\mathrm{T}=[\mathrm{NOT}]$ list, $\mathrm{F}=$ normal list
n
$=$ number of entries in list; maximum is 5
111... 555

S
$=$ atomic number of each atom on the list
= space

The Stext Block ${ }^{\text {ap }}$

The Stext Block is made up of two-line entries with the following format:
xxxxx, xxxxyyyy, yyyy
TTTT..
where:

```
x y
T
```

= stext coordinate
$=$ stext text

The Properties Block

The Properties Block is made up of mmm lines of additional properties, where mmm is the number in the counts line described above. If a version stamp is present, mm is ignored and the file is read until an M END line is encountered. Currently mmm is no longer supported and set to 999 as the default.

Most lines in the properties block are identified by a prefix of the form M XXX where two spaces separate the M and $x x x$. Exceptions are:

- A aaa, v aaa vvvvvv, and G aapppp, which indicate ISIS and CPSS properties: atom alias, atom value, and group abbreviation (called residue in ISIS), respectively.
- S SKPnnn which causes the nextnnn lines to be ignored.

The prefix: M END terminates the properties block.
Variables in the formats can change properties but keep the same letter designation. For example, on the Charge, Radical, or Isotope lines, the "uniformity" of the vvv designates a general property identifier. On Sgroup property lines, the sss uniformity is used as an Sgroup index identifier.

All lines that are not understood by the program are ignored.
The descriptions below use the following conventions for values in field widths of 3 :

```
n15 number of entries on line; value =1 to 15
nn8 number of entries on line; value =1 to 8
nn6 number of entries on line; value =1 to 6
nn4 number of entries on line; value =1 to 4
nn2
nn1
a a a
number of entries on line; value =1 or 2
number of entries on line; value =1
atom number; value = (1 to number of atoms)
```

The format for the properties included in this block follows. The format shows one entry; ellipses (. . .) indicate additional entries.

Atom Alias CP

```
A aaa
```

x...
aаa: Atom number
x... Alias text

Atom Value CP

```
V aaa V...
```

a a a:
V...

Group Abbreviation CP

G aaappp
X. .
a a a

PPD:
X...

Atom number
Value text

Atom number
Atom number
Abbreviation label.
Abbreviation is required for compatibility with CPSS. CPSS allowed abbreviations with only one attachment. The attachment is denoted by two atom numbers, aaa and ppp. All of the atoms on the aaa side of the bond formed by aaa-ppp are abbreviated. The coordinates of the abbreviation are the coordinates of aaa. The text of the abbreviation is on the following line (x . . .). In current versions of ISIS, abbreviations can have any number of attachments and are written out using the Sgroup appendixes. However, any ISIS abbreviations that do have one attachment are also written out in the CPSS-style, again for compatibility with CPSS, but this behavior might not be supported in future versions.

Charge G

M CHGnn8 aaa vvv...
vvv:
-15 to +15 . Default of $0=$ uncharged atom. When present, this property supersedes all charge and radical values in the atom block, forcing a 0 charge on all atoms not listed in an M CHG or M RAD line.

Radical ${ }^{\mathbf{G}}$

```
M RADnn8 aaa vvv ...
```

V V V :

Isotope G

> vv v:
> Absolute mass differing from natural abundance (as specified by PTABLE.DAT) within the range -18 to +12 . When present, this property supersedes all isotope values in the atom block. Default (no entry) is natural abundance.

Ring Bond Count \mathbf{Q}

M RBDnn8 aaa vvv
vvv: \quad Number of ring bonds allowed: default of $0=o f f,-1$ $=$ no ring bonds (r 0), $-2=$ as drawn (r^{*}) ; $2=(\mathrm{r} 2$), $3=$ $(\mathrm{r} 3), 4$ or more $=(\mathrm{r} 4)$.

Substitution Count Q

M SUBnn8 aaa vvv
vvv: Number of substitutions allowed: default of $0=0 f f$, $-1=$ no substitution (s 0), $-2=$ as drawn (s^{*}) ; $1,2,3,4$, $5=(\mathrm{s} 1)$ through (s5), 6 or more $=(\mathrm{s} 6)$.

Unsaturated Atom Q

```
M UNSnn8 aaa vvv
```

vve:
At least one multiple bond: default of $0=o f f, 1=o n$.

Link Atom Q

```
M LINnn4 aaa vvv bbb ccc ...
```

$v v v, b b b, c c c: \quad$ Link atom (aaa) and its substituents, other than $b b b$ and ccc, may be repeated 1 to vvv times, (vvv>>= 2).

Atom List Q

M ALS aannn e 11112222333344445555...
aaa: \quad Atom number, value $=(1$ to \#atoms $)$.
$n n n: \quad$ Number of entries on line (16 maximum).
e:
1111...:

Atom symbol of list entry in field of width 4.
Note: This line contains the atom symbol rather than the atom number used in the atom list block. Any data found in this item supersedes data from the atom list block. The number of entries can exceed the fixed limit of $* 5 *$ in the atom list block entry.

Attachment Point Rg

```
M APOnn2 aaa vvv ...
```

vvv: Indicates whether atom aaa of the Rgroup member is the first attachment point ($\mathrm{v} v \mathrm{v}=1$), second attachment point ($\mathrm{v} v \mathrm{v}=2$), both attachment points ($\mathrm{v} v \mathrm{v}=3$); default of $0=$ no attachment.

Atom Attachment Order Rg

```
M AAL aaann2 111 v1v 222 v2v
```

aaa: \quad Atom index of the Rgroup usage atom
$n n 2: \quad$ Number of pairs of entries that follow on the line
111: Atom index of a neighbor of aaa
v1v: \quad Attachment order for the aat-111 bond
222: Atom index of a neighbor of aat
v2v: Attachment order for the aaa-222 bond

Note: v1v and v2v are either 1 or 2 for the simple
doubly attached Rgroup member.
This appendix provides explicit attachment list order information for R\# atoms. The appendix contains atom neighbor index and atom neighbor value pairs. The atom neighbor value information identifies the atom neighbor index as the ith attachment. The implied ordering in V2000 molfiles is by atom index order for the neighbors of Rgroup usage atoms. If atom index order conflicts with the desired neighbor ordering at the R\#atom, this appendix allows you to override to this default order.

If $\mathrm{v} 1 \mathrm{v}=1$ and $\mathrm{v} 2 \mathrm{v}=2$, ISIS/Host only writes this appendix if 111 is greater than 222. Note, however, that the attachment values can be written in any order.

Rgroup Label Location Rg

r r	Rgroup number, value from 1 to 32, labels position of Rgroup on root.
Rgroup Logic, Unsatisfied	Sites, Range of Occurrence Rg
M Lognnl rrr iii hhh	000
rr ${ }^{\text {r }}$	Rgroup number, value from 1 to 32.
i i i	Number of another Rgroup which must only be satisfied if $r r r$ is satisfied (IF $r r r$ THEN $\mathrm{i} i \mathrm{i}$).
hhh:	RestH property of Rgroup rr ; default is $0=$ off, $1=$ on. If this property is applied (on), sites labeled with Rgroup rrr may only be substituted with a member of the Rgroup or with H .
000	Range of Rgroup occurrence required: $\mathrm{n}=$ exactly n , $\mathrm{n}-\mathrm{m}=\mathrm{n}$ through $\mathrm{m},>\mathrm{n}=$ greater than $\mathrm{n},<\mathrm{n}=$ fewer than n , default (blank) is >0. Any non-contradictory combination of the preceding values is also allowed; for example: 1, 3-7, 9, >11.

Sgroup Type Sg

```
M STYnn8 sss ttt ...
```

SS S:
t t t:

Sgroup number.
SUP = superatom, MUL = multiple group, SRU = SRU type, MON = monomer, MER = Mer type, COP = copolymer, $\mathrm{CRO}=$ crosslink, $\mathrm{MOD}=$ modification, GRA = graft, COM = component, MIX = mixture, FOR = formulation, DAT = data Sgroup, ANY = any polymer, GEN = generic.

Note: For a given Sgroup, an STY line giving its type must appear before any other line that supplies information about it. For a data Sgroup, an SDT line must describe the data field before the SCD and SED lines that contain the data (see Data Sgroup Data below). When a data Sgroup is linked to another Sgroup, the Sgroup must already have been defined.

Sgroups can be in any order on the Sgroup Type line. Brackets are drawn around Sgroups with the M SDI lines defining the coordinates.

Sgroup Subtype Sg

```
M SSTnn8 sss ttt ...
```

ttt: Polymer Sgroup subtypes: ALT = alternating, RAN = random, BLO = block.

Figure 2-2 Cab organization of an Sgroup structure

Polymer

Sgroup Labels Sg

```
M SLBnn8 sss vvv ...
```

vv v: Unique Sgroup identifier (for MACCS-II only, the integer label is from 1-512).

Sgroup Connectivity Sg

```
M SCNnn8 sss ttt
```

tt t: $\quad \mathrm{HH}=$ head-to-head, $\mathrm{HT}=$ head-to-tail, $\mathrm{EU}=$ either unknown. Left justified.

Sgroup Expansion $\mathbf{S g}$

M SDS EXPn15 sss
sss: Sgroup index of expanded superatoms.

Sgroup Atom List Sg

```
M SAL sssn15 aaa
```

```
aaa: Atoms in Sgroup sss.
```


Sgroup Bond List Sg

```
M SBL sssn15 bbb
```

bbb: Bonds in Sgroup sss. (For data Sgroups, bbb's are the containment bonds, for all other Sgroup types, bbb's are crossing bonds.)

Multiple Group Parent Atom List Sg

M SPA sssnl5 aaa
aaa: \quad Atoms in paradigmatic repeating unit of multiple group sss.

Note: To ensure that all current molfile readers consistently interpret chemical structures, multiple groups are written in their fully expanded state to the molfile. The M SPA atom list is a subset of the full atom list that is defined by the Sgroup Atom List M SAL entry.

Sgroup Subscript Sg

m. .: Text of subscript Sgroup sss. (For multiple groups, m. . . is the text representation of the multiple group multiplier. For superatoms, m. . . is the text of the superatom label.

Sgroup Correspondence $\mathbf{S g}$

```
M CRS sssnn6 bb1 bb2 bb3
```

bb1, bb2: Crossing bonds that share a common bracket.
bb3: Crossing bond in repeating unit that connect to bond
bbl.

Sgroup Display Information Sg

```
M SDI sssnn4 xl yl x2 y2
```

$x 1, y 1, x 2$, y $2: \quad$ Coordinates of bracket endpoints (FORTRAN format 4F10.4).

Superatom Bond and Vector Information Sg

```
M SBV sss bbl xl yl
```

bb1: Bond connecting to contracted superatom.
$\mathrm{x} 1, \mathrm{y} 1: \quad$ Vector for bond bbl connecting to contracted superatom sss (FORTRAN format 2F10.4).

Data Sgroup Field Description Sg

```
M SDT sss fff...fffgghhh...hhhiijjj...
```

sss: Index of data Sgroup.
$f f f \ldots f f f: \quad 30$ character field name (in MACCS-II no blanks,commas, or hyphens).

Field type (in MACCS-II F = formatted, $\mathrm{N}=$ numeric, $\mathrm{T}=$ text).
hhh...hhh: 20-character field units or format.
i i

Nonblank if data line is a query rather than Sgroup data, $\mathrm{MQ}=\mathrm{MACCS}-\mathrm{II}$ query, $\mathrm{IQ}=\mathrm{ISIS}$ query, $\mathrm{PQ}=$ program name code query.

Data query operator (blank for MACCS-II).

Data Sgroup Display Information Sg

Data Sgroup Data $\mathbf{~ S g}$

```
M SCD sss d...
M SED sss d...
```

d...: Line of data for data Sgroup sss (69 chars per line, columns 12-80)

Note: A line of data is entered as text in 69-character substrings. Each SCD line adds 69 characters to a text buffer (starting with successive SCDs at character positions 1, 70, and 139). Following zero or more

SCDs must be an SED, which may supply a final 69 characters. The SED initiates processing of the buffered line of text: trailing blanks are removed and right truncation to 200 characters is performed, numeric and formatted data are validated, and the line of data is added to data Sgroup sss. Left justification is not performed.

A data Sgroup may have more than one line of data, so more than one set of SCD and SED lines can be present for the same data Sgroup. The lines are added in the same order that they are encountered.

If 69 or fewer characters are to be entered on a line, they may be entered with a single SED not preceded by an SCD. On the other hand, if desired a line may be entered to a maximum of 3 SCDs followed by a blank SED that terminates the line. The set of SCD and SED lines describing one line of data for a given data Sgroup must appear together, with no intervening lines for other data Sgroups' data.

Sgroup Hierarchy Information Sg

ccc: Sgroup index of the child Sgroup.
ppp
Sgroup index of the parent Sgroup (ccc and ppp must already be defined via an STY line prior to encountering this line).

Sgroup Component Numbers Sg

```
M SNCnn8 sss 000 ...
```

sss: Index of component Sgroup.
000: Integer component order (1...256). This limit applies
only to MACCS-II.

3D Feature Properties 3D

M \$3D... See below for information on the properties block of a 3D molfile. These lines must all be contiguous.

End of Block
M END
This entry goes at the end of the properties block and is required for molfiles which contain a version stamp in the counts line.

The Properties Block for 3D Features 3 [

For each 3D feature, the properties block includes:

- One 3D features count line
- One or more 3D features detail lines

The characters $M \$ 3 D$ appear at the beginning of each line describing a 3D feature. The information for 3D features starts in column 7.

Figure 2-3 illustrates the molfile corresponding to the following 3D query:

Figure 2-3 Cab organization of a 3D query

3D features count line

The first line in the properties block is the 3D features count line and has the following format:

```
M $3Dnnn
```

where $n n n$ is the number of 3D features on a model.

3D features detail lines

The lines following the 3D features count line describe each 3D feature on a model. Each 3D feature description consists of an identification line and one or more data lines:

- The identification line is the first line and contains the 3D feature's type identifier, color, and name.
- Each data line describes the construction of the 3D feature.

Identification line

The 3D feature identification line has the following format:

```
M $3Dfffccc aaa...aaa ttt...ttt
```

where the variables represent:

$f f f$	3D feature type
$c c c$	Color number (an internal MDL number which is terminal dependent)
aaa...aaa	3D feature name (up to 32 characters)
$t t t \ldots t t t$	Text comments (up to 32 characters) used by MDL programs (see 3D data constraints on page 2-31)

Table 2-3 lists the 3D feature type identifiers.
Table 2-3 3D feature type identifiers

Identifier	Meaning
-1	Point defined by two points and a distance (in Angstroms)
-2	Point defined by two points and a percentage
-3	Point defined by a point, a normal line, and a distance
-4	Line defined by two or more points (A best fit line if more than two points)
-5	Plane defined by three or more points (A best fit plane if more than three points)
-6	Plane defined by a point and a line
-7	Centroid defined by points
-8	Normal line defined by a point and a plane
-9	Distance defined by two points and a range (in Angstroms)
-10	Distance defined by a point, line, and a range (in Angstroms)
-11	Distance defined by a point, plane, and a range (in Angstroms)
-12	Angle defined by three points and a range (in degrees)
-13	Angle defined by two intersecting lines and a range (in degrees)
-14	Angle defined by two intersecting planes and a range (in degrees)
-15	Dihedral angle defined by 4 points and a range (in degrees)
-16	Exclusion sphere defined by a point and a distance (in Angstroms)
-17	Fixed atoms in the model
$n n n$	A positive integer indicates atom or atom-pair data constraints

Data line

The 3D feature defines the data line format. Each 3D object is treated as a pseudoatom and identified in the connection table by a number. The 3D object numbers are assigned sequentially, starting with the next number greater than the number of atoms. The data line formats for the 3D feature types are:

Type Description of Data Line

$-1 \quad$ The data line for a point defined by two points and a distance (\AA) has the following format:

M \$3Diiijjjddddd.dddd
where the variables represent:

iii	ID number of a point
jjj	ID number of a second point
$d d d d d . d d d d$	Distance from first point in direction of second point $(\AA), 0$ if not used

The following example shows POINT_1 created from the atoms 1 and 3 with a constraint distance of $2 \bar{A}$.

The first line is the identification line. The second line is the data line.

M	$\$ 3 D$	-1	4	POI NT 1
M	$\$ 3 D$	1	3	2.0000

The data line for a point defined by two points and a percentage has the format:

```
M $3Diiijjjddddd.ddddd
```

where the variables represent:

i ii	ID number of a point
j j j	ID number of a second point
$d d d d d . d d d d$	Distance (fractional) relative to distance between first and second points, 0 if not used

Type Description of Data Line

-3 The data line for a point defined by a point, a normal line, and a distance (\AA) has the format:

M \$3Diiillldddd.dddd
where the variables represent:

i i i	ID number of a point		
$\\|\\|$	ID number of a normal line		
ddddd.dddd	Distance $(\AA), 0$ if not used		

Note: For chiral models, the distance value is signed to specify the same or opposite direction of the normal.
$-4 \quad$ The data lines for a best fit line defined by two or more points have the following format:

```
M $3Dppptttt.tttt
M $3Diiijjj...zzz
```

where the variables represent:

ppp	Number of points defining the line
$t t t t, t t t t$	Deviation $(\AA), 0$ if not used. $i j i$
Each $i j i, j j$, and $z z z$ is the ID number $j j j$ of an item in the model that defines the line	

(to maximum of 20 items per data line)
The following line is defined by the four points $1,14,15$, and 19 and has a deviation of $1.2 \AA$. The first line is the identification line. The second and third lines are the data lines.

M	$\$ 3 D$	-4	2	N_{-}TO_AROM
M	$\$ 3 D$	4		1.2000
M	$\$ 3 D$	1	14	15

Type Description of Data Line

$-5 \quad$ The data lines for a plane defined by three or more points (a best fit plane if more than three points) have the following format:

```
M $3Dpppttttt.tttt
M $3Diiijjj...zzz
```

where the variables represent:

ppp	Number of points defining the line
ttttt.ttt	Deviation (\AA), 0 if not used.
i i i	Each $\mathrm{i} i \mathrm{i}, \mathrm{j} j \mathrm{j}$, and zzz is the ID number $\mathrm{j} j \mathrm{j}$ of an item in the model that defines the line

$z z z \quad$ (to maximum of 20 items per data line)
The following line is defined by the four points $1,14,15$, and 19 and has a deviation of $1.2 \AA$. The first line is the identification line. The second and third lines are the data lines.

```
M $3D - 5 4 PLANE_2
M $3D 3
M $3D 1 5 14
```

-6 The data line for a plane defined by a point and a line has the following format:

M \$3Diiilll
where the variables represent:
i i i ID number of a point
।।I ID number of a line

The following plane is defined by the point 1 and the plane 16. The first line is the identification line. The second line is the data line.

```
M $3D - 6 3 PLANE_1
M $3D 1 16
```


Type Description of Data Line

-7 The data lines of a centroid defined by points have the following format:

```
M $3Dppp
M $3Diiijjj...zzz...
```

where the variables represent:

$p p p$	Number of points defining the centroid
$\mathrm{i} i \mathrm{i}$	Each $i \mathrm{i} i, j, j j$, and $z z z$ is the ID number $\mathrm{j} j \mathrm{j}$ of an item in the model that defines the centroid

j j j
$z z z \quad$ (maximum of 20 items per data line).

The following centroid, ARO_CENTER, is defined by 3 items: 6,8 , and 10. The first line is the identification line. The second and third lines are the data lines.

M	$\$ 3 D$	-7	1	ARO_CENTER
M	$\$ 3 D$	3		
M	$\$ 3 D$	6	8	10

The data line for a normal line defined by a point and a plane has the following format:

```
M $3Di\ijjj
```

where the variables represent:
i i i ID number of a point
j j j ID number of a plane

The following normal line, ARO_NORMAL, is defined by the point 14 and the plane 15 . The first line is the identification line. The second line is the data line.

```
M $3D-8 1 ARO_NORMAL
M $3D 14 15
```


Type Description of Data Line

-9 The data line for a distance defined by two points and a range (\AA) has the following format:

M \$3Diiijjjddddd.ddddzzzzz.zzzz
where the variables represent:

iii	ID number of a point
jjj	ID number of a second point
ddddd.dddd	Minimum distance (\AA)
$z z z z z . z z z z$	Maximum distance (\AA)

The following distance, L , is between items 1 and 14 and has a minimum distance of $4.9 \AA$ and a maximum distance of $6.0 \AA$. The first line is the identification line. The second line is the data line.

```
M $3D-9 6 L
M $3D 1 14 4.9000 6.0000
```

-11 The data line for a distance defined by a point, plane, and a range (\AA) has the format:

$$
\text { M } \quad \text { \$ } 3 \mathrm{Di} \mathrm{i} \mathrm{i} j \text { j j dddddd. } d d d d z z z z z . z z z z
$$

where the variables represent:

i i i	ID number of a point
jjj	ID number of a plane
$\mathrm{ddddd.dddd}$	Minimum distance (\AA)
$z z z z z . z z z z$	Maximum distance (\AA)

Type Description of Data Line

-12 The data line for an angle defined by three points and a range (in degrees) has the following format:

M \$3Diiijjjkkkddddd.ddddzzzzz.zzzz
where the variables represent:

i i i	ID number of a point
$\mathrm{j} j \mathrm{j}$	ID number of a second point
kkk	ID number of a third point
$\mathrm{ddddd.dddd}$	Minimum degrees
$z z z z z . z z z z$	Maximum degrees

The following angle, THETA1, is defined by the three points: 5 , 17 , and 16 . The minimum angle is 80° and the maximum is 105°. The first line is the identification line. The second line is the data line.

```
M $3D-12 5 THETA1
M $3D 5 17 16 80.0000 105.0000
```

-13 The data line for an angle defined by two lines and a range (in degrees) has the following format:

```
M $3D|||mmmddddd.ddddzzzzz.zzzz
```

where the variables represent:

111	ID number of a line, mmm ID number of a second line
ddddd.dddd	Minimum degrees
$z z z z z . z z z z$	Maximum degrees

THETA2 is defined by the lines 27 and 26 with maximum and minimum angles of 45° and 80°. The first line is the identification line. The second line is the data line.

```
M $3D-13 5 THETA2
M $3D 27 26 45.0000 80.0000
```


Type Description of Data Line

-14 The data line for an angle defined by two planes and a range (in degrees) has the following format:

M \quad 3 Di i i j j j d ddddd. ddddzzzzz.zzzz
where the variables represent:

$\mathrm{i} i \mathrm{i}$	ID number of a plane
$j j j$	ID numbers of a second plane
ddddd.dddd	Minimum degrees
$z z z z z . z z z z$	Maximum degrees

-15 The data line for a dihedral angle defined by four points and a range (in degrees) has the following format:

```
M $3Di i ijjjkkk|||ddddd.ddddzzzzzz.zzzz
```

where the variables represent:

i i i	ID number of a point		
jjj	ID number of a second point		
kkk	ID number of a third point		
$\\|\\| \mathrm{ID}$	ID number of a fourth point		
$d d d d d . d d d d$	Minimum degrees		
$z z z z z . z z z z$	Maximum degrees		

DIHED1 is defined by the items $7,6,4$, and 8 with minimum and maximum angles of 45° and 80°, respectively. The first line is the identification line. The second line is the data line.

```
M $3D-15 5 DI HED1
M $3D 7 6 4 4 8 45.0000 80.0000
```


Type Description of Data Line

-16 The data lines for an exclusion sphere defined by a point and a distance (\AA) have the following format:

```
M $3Diiiuuuaaaddddd.dddd
M $3Dbbbccc...zzz ...
```

where the variables represent:

Type Description of Data Line

-17 The data lines of the fixed atoms have the following format:
M $\$ 3 \mathrm{Dppp}$
M \$3Diiijjj...zzz...
where the variables represent:

ppp	Number of fixed points
$\mathrm{i} i \mathrm{i}$	Each $\mathrm{ii} i, j j j$, and $z z z$ is an ID number of a fixed atom

j j j
$z z z \quad$ (to maximum of 20 items per data line)
The following examples shows 4 fixed atoms. The first line is the identification line. The second and third lines are the data lines.

```
M $3D-17
M $3D 4
M $3D 3 7 12 29
```


3D data constraints 3D a

A positive integer is used as a type identifier to indicate an atom or atom-pair data constraint. Two lines are used to describe a data constraint. The lines have the following format:

```
M $3Dnnncccaaa...aaabbbbbbbbpppppppppssss...sss
M $3Diiijjjddd...ddd
```

where the variables represent:

$n n n$	Database-field number
ccc	Color
aaa....aaa	Database-field name (up to 30 characters)
bbbbbbbb	/BOX = box-number (source of data) (up to 8 characters)
ppppppppp	/DASP = n1, n2 where n1 and n2 are digits from 1-9 (data size and position) (up to 9 characters)

SSS. . . S S S
i i i
j j j
$d d d . . . d d d$
/DISP = 3DN (name), 3DV (value), 3DQ (query), NOT (no text)
First three in any combination to maximum total of 15 characters
ID number of an atom
ID number of a second atom for atom-pair data, 0 if data is atom data
Data constraint (based on format from database) (up to 64 characters)
ISIS 3D data query syntax and MACCS-II 3D data query syntax are not identical. The ISIS data query requires a search operator, a blank space, then one or more operands. For more information on ISIS data query syntax, see the ISIS Help system entries on SBF (Search By Form) or QB (Query Builder) for entering text in a query. For information on MACCS-II data searches, see the MACCS-II Command Language Reference.

Note: For MACCS-II, the atom number 999 stands for all atoms. The MACCS-II wild card character (@) can be used in the data constraints.

The following example shows a numeric data constraint for the field CNDO.CHARGE on atom 12. The first line is the identification line. The second line is the data line.

```
M $3D 7 O CNDO.CHARGE
M $3D 12 0 - 0.3300 - 0.1300
```

The following example shows a numeric data constraint for the field BOND.LENGTH on the atom pair 1 and 4 . The first line is the identification line. The second line is the data line.

M	$\$ 3 D$	9	0	BOND. LENGTH	
M	$\$ 3 D$	1	4	2.0500	1.8200

The following example shows a data constraint allowing any charge value for the field CHARGE on all the atoms. The first line is the identification line. The second line is the data line.

```
M $3D 12 O CHARGE
M $3D999 0 @
```


Stereo Notes

Parity can be illustrated as follows:
Mark a bond attached at a stereo center Up or Down to define the configuration. Number the atoms sumounding the stereo center with $1,2,3$, and 4 in order of increasing atom number (position in the atom block) (a hydrogen atom should be considered the highest numbered atom, in this case atom 4). View the center from a position such that the bond connecting the highest-numbered atom (4) projects behind the plane formed by atoms 1,2 , and 3.

Note: In the figure, atoms 1,2 , and 4 are all in the plane of the paper, and atom 3 is above the plane.

Sighting towards atom number 4 through the plane (123), you see that the three remaining atoms can be arranged in either a clockwise or counterclockwise direction in ascending numerical order.

The Ctab lists a parity value of 1 for a clockwise arrangement at the stereo center and 2 for counterclockwise. A center with an Either bond has a parity value of 3 . An unmarked stereo center is also assigned a value of 3 . The first example above has a parity value of 2 .

Chapter 3

Molfiles

molfile
 aab

A molfile consists of a header block and a connection table. Figure 3-1 shows a molfile for alanine corresponding to the following structure:

Figure 3-1 Molfile organization illustrated using alanine

The format for a molfile is:

- Header block: This identifies the molfile with the molecule name, user's name, program, date, and other miscellaneous information and comments
- Ctab block (described in Chapter 2)

The detailed format for the header block follows.

The Header Block

Line 1: \quad Molecule name. This line is unformatted, but like all other lines in a molfile may not extend beyond column 80 .

Caution: This line must not contain any of the reserved tags that identify any of the other CTAB file types such as $\$$ MDL (RGfile), $\$ \$ \$ \$$ (SDfile record separator), \$RXN (rxnfile), or \$RDFILE (RDfile headers).

Line 2:	User's first and last initials (I), program name (P), date/time (M/D/Y,H:m), dimensional codes (d), scaling factors (S, s), energy (E) if modeling program input, internal registry number (R) if input through MDL form. This line has the format:
	IIPpppppppmmddyyhtmmddSSsssssssssseeeeeeeeeeeerrrrrr
(FORTRAN:	
	A blank line can be substituted for line 2.
Line 3:	A line for comments. If no comment is entered, a blank line must be present.

Chapter 4

RGfiles

The format of an RGfile (Rgroup query file) is shown below. Lines beginning with $\$$ define the overall structure of the Rgroup query; the molfile header block is embedded in the Rgroup header block.

In addition to the primary connection table (Ctab block) for the root structure, a Ctab block defines each member (${ }^{*} \mathrm{~m}$) within each Rgroup (${ }^{*}$).
\$MDL REV 1 date/time
\$ MOL
\$ HDR
[Molfile Header Block (see Chapter 3) = name, pgminfo, comment]
\$END HDR
\$CTAB
[Ctab Block (see Chapter 2) = count + atoms + bonds + i ists + props
\$END CTAB
\$RGP
rrr [where rrr = Rgroup number]

```
$CTAB
```

[Ctab Block]
\$END CTAB
\$END RGP
\$END mol
where:
*r (Rgroup) is repeated to a maximum of 32

* m (member) is repeated to a maximum of 255 total atoms and bonds per Rgroup

Figure 4-1 Example of an RGile (Rgroup query file)

The RGfile shown in Figure 4-1 corresponds to the following Rgroup query:

Chapter 5

SDfiles

An SDfile (structure-data file) contains the structural information and associated data items for one or more compounds. An example of an SDfile is shown in Figure 5-1. The format is:

where:

* is repeated for each line of data
$*_{d}$ is repeated for each data item
${ }^{*}$ is repeated for each compound
A [Molfile] block has the molfile format described in Chapter 3 or Chapter 10.
A [Data Header] (one line) precedes each item of data, starts with a greater than $(>)$ sign, and contains at least one of the following:
- The field name enclosed in angle brackets. For example: <melting. point >
- The field number, DTn, where n represents the number assigned to the field in a MACCS database

Optional information for the data header includes:

- The compound's external and internal registry numbers. External registry numbers must be enclosed in parentheses.
- Any combination of information

The following are examples of valid data headers:
> <MELTING.POINT>
> 55 (MD.08974) <BOILING.POINT> DT12
> DT 1255
>(MD.0894) <BOILING.POINT> FROM ARCHIVES

Figure 5-1 Example of an SDfile

\$

A [Data] value may extend over multiple lines containing up to 200 characters each. A blank line terminates each data item.

A line containing four dollar signs (\$\$\$) terminates each complete data block describing a compound.

A datfile (data file) is effectively an SDfile with no [Molfile] descriptions or $\$ \$ \$ \$$ delimiters. The [Data Header] in a datfile must include either an external or internal registry number in addition to a field name or number.

SDfile after a CFS search

After a conformationally flexible substructure (CFS) search, the following format information is appended by ISIS/Base PL to your SDfile after the connection table:

- Query information (M \$3D appendix lines added to embedded molfile)
- CFS generated data (*DATA)
- MAPPED ATOMS and BONDS

This information describes, for example, how query atoms are mapped, the atom coordinates in models, and what is fitted during a CFS search.

Figure 5-2 Example of SDfile with appended CFS query information

\$ \$ \$

Chapter 6

Rxnfiles

Rxnfiles contain structural data for the reactants and products of a reaction. An example rxnfile for a simple reaction is shown in Figure 6-1. The format is:

where:

* is repeated for each reactant
${ }^{*}$ is repeated for each product

Header Block

Line 1:
Line 2:
Line 3:
(FORTRAN:
$\$$ RXN in the first position on this line identifies the file as a reaction file.
A line which is always blank.
The program name and version (P), date/time ($\mathrm{M} / \mathrm{D} / \mathrm{Y}, \mathrm{H}: \mathrm{m}$), and reaction registry number (R). This line has the format:
ppppppppmmdDy hHmmRRRRRRR

A blank line can be substituted for line 3.
Line 4:

A line for comments. If no comment is entered, a blank line must be present.

Figure 6-1 Rxnfile for the acylation of benzene
\$RXN

REACCS81 1017911041 7439

21
\$MOL

```
REACCS8110179110412D 1
0.00380
0.00000
315
```


0.3233	-0.2358	0.0000	C	0	0	0	0	0	0	0	0	0	1	0	0
-1.0346	-0.9623	0.0000	C	0	0	0	0	0	0	0	0	0	2	0	0
0.3233	1.4149	0.0000	0	0	0	0	0	0	0	0	0	0	3	0	0
1.6431	-1.0308	0.0000	Cl	0	0	0	0	0	0	0	0	0	0	0	

$\begin{array}{lllllll}1 & 2 & 1 & 0 & 0 & 0 & 2\end{array}$
$\begin{array}{lllllll}1 & 3 & 2 & 0 & 0 & 0 & 2 \\ 1 & 4 & 1 & 0 & 0 & 0 & 4\end{array}$
\$MOL

```
REACCS8110179110412D 1 0.00371 0.00000 8
```

$\begin{array}{llllllllll}6 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$

1.3335	-0.7689	0.0000	C	0	0	0	0	0	0	0	0	0	5	0
1.3335	0.7689	0.0000	C	0	0	0	0	0	0	0	0	0	6	0
0														
0.0000	-1.5415	0.0000	C	0	0	0	0	0	0	0	0	0	7	0
0.0000	1.5415	0.0000	C	0	0	0	0	0	0	0	0	0	8	0
0														
-1.3335	-0.7689	0.0000	C	0	0	0	0	0	0	0	0	0	9	0
-1.3335	0.7689	0.0000	C	0	0	0	0	0	0	0	0	0	10	0

$\begin{array}{lllllll}1 & 2 & 1 & 0 & 0 & 0 & 2\end{array}$
$\begin{array}{lllllll}1 & 3 & 2 & 0 & 0 & 2\end{array}$
$\begin{array}{lllllll}2 & 4 & 2 & 0 & 0 & 0 & 2\end{array}$
$\begin{array}{lllllll}3 & 5 & 1 & 0 & 0 & 0 & 2\end{array}$
$\begin{array}{lllllll}4 & 6 & 1 & 0 & 0 & 0 & 2\end{array}$
$\begin{array}{lllllll}5 & 6 & 2 & 0 & 0 & 0 & 2\end{array}$
\$MOL

```
REACCS8110179110412D 1 0.00374 0.00000 255
```

9	0	0	0	0	0	0	0										
-0.5311	-0.1384	0.0000	C	0	0	0	0	0	0	0	0	0	5	0	0		
-1.8626	0.6321	0.0000	C	0	0	0	0	0	0	0	0	0	6	0	0		
-0.5311	-1.6943	0.0000	C	0	0	0	0	0	0	0	0	0	7	0	0		
0.8191	0.6284	0.0000	C	0	0	0	0	0	0	0	0	0	1	0	0		
-3.2278	-0.1346	0.0000	C	0	0	0	0	0	0	0	0	0	8	0	0		
-1.8813	-2.4723	0.0000	C	0	0	0	0	0	0	0	0	0	9	0	0		
2.1282	-0.1085	0.0000	C	0	0	0	0	0	0	0	0	0	2	0	0		
0.8191	2.2292	0.0000	0	0	0	0	0	0	0	0	0	0	3	0	0		
-3.2278	-1.6831	0.0000	C	0	0	0	0	0	0	0	0	0	10	0	0		
1	2	0	0	0	2												

$\begin{array}{lllllll}6 & 9 & 2 & 0 & 0 & 0 & 2\end{array}$

Header block \#Reactants/ \#Products Molfile delimiter

Molfile for first reactant

Molfile delimiter

Molfile for second reactant

Molfile delimiter

Molfile for product

Reactants/Products

A line identifying the number of reactants and products, in that order. The format is:
rrrppp
where the variables represent:

$r r r$	Number of reactants
$p p p$	Number of products

Molfile Blocks

A series of blocks, each starting with $\$$ MOL as a delimiter, giving the molfile for each reactant and product in turn. The molfile blocks are always in the same order as the molecules in the reaction; reactants first and products second.

The rxnfile in Figure 6-1 corresponds to the following reaction:

Note: MACCS-II cannot read or write connection tables for reactions.

Chapter 7

RDfiles

An RDfile (reaction-data file) consists of a set of editable "records." Each record defines a molecule or reaction, and its associated data. An example RDfile incorporating the rxnfile described in Chapter 6 is shown in Figure 7-1. The format for an RDfile is:

where:
$*_{d}$ is repeated for each data item

* is repeated for each reaction or molecule

Each logical line in an RDfile starts with a keyword in column 1 of a physical line. One or more blanks separate the first argument (if any) from the keyword. The blanks are ignored when the line is read. After the first argument, blanks are significant.

An argument longer than 80 characters breaks at column 80 and continues in column 1 of the next line. (The argument may continue on additional lines up to the physical limits on text length imposed by the database.)

The RDfile must not contain any blank lines except as part of embedded molfiles, rxnfiles, or data. An identifier separates records.

RDfile Header

Line 1:

\$RDFILE 1: The [RDfile Header] must occur at the beginning of the physical file and identifies the file as an RDfile. The version stamp " 1 " is intended for future expansion of the format.

Line 2: $\quad \$$ DATM: Date/time (M/D/Y, H:m) stamp. This line is treated as a comment and ignored when the program is read.

Molecule and Reaction Identifiers

A [Molecule or Reaction Identifier] defines the start of each complete record in an RDfile. The form of a molecule identifier must be one of the following:

```
$MFMT [ $MIREG internal-regno [ $MEREG external-regno]] embedded molfile
$MIREG internal-regno
$MEREG external-regno
```

where:

- \$MFMT defines a molecule by specifying its connection table as a molfile
- \$MIREG internal-regno is the internal registry number (sequence number in the database) of the molecule
- \$MEREG external-regno is the external registry number of the molecule (any uniquely identifying character string known to the database, for example, CAS number)
- Square brackets ([]) enclose optional parameters
- An embedded molfile (see Chapter 3) follows immediately after the \$MFMT line

The forms of a reaction identifier closely parallel that of a molecule:

```
$RFMT [ $RIREG internal-regno [ $REREG external-regno]] embedded rxnfile
$PCRXN [ $RIREG internal-regno [$REREG external-regno]] embedded CPSS rxnfile CP
$RIREG internal-regno
$REREG external-regno
```

where:

- \$RFMT defines a reaction by specifying its descripton as a rxnfile and \$PCRXN CP defines a reaction by specifying its descripton as a CPSS-style rxnfile
- \$RIREG internal-regno is the internal registry number (sequence number in the database) of the reaction
- \$REREG external-regno is the external registry number of the reaction (any uniquely identifying character string known to the database)
- Square brackets ([]) enclose optional parameters
- An embedded rxnfile (see Chapter 6) follows immediately after the \$RFMT line, and an embedded CPSS-style rxnfile follows immediately after the \$PCRXN CP line

Data-field Identifier

The [Data-field Identifier] specifies the name of a data field in the database. The format is:

```
$DTYPE field name
```


Data

Data associated with a field follows the field name on the next line and has the form:
\$DATUM datum
The format of datum depends upon the data type of the field as defined in the database. For example: integer, real number, real range, text, molecule regno.

For fields whose data type is "molecule regno," the datum must specify a molecule and, with the exception noted below, use one of the formats defined above for a molecular identifier. For example:

```
$DATUM $MFMT embedded molfile
$DATUM $MEREG external-regno
$DATUM $MIREG internal-regno
```

In addition, the following special format is accepted:
\$DATUM molecule-identifier
Here, molecule-identifier acts in the same way as external-regno in that it can be any text string known to the database that uniquely identifies a molecule. (It is usually associated with a data field different from the external-regno.)

Figure 7-1 Example of a reaction RDfile

```
$RDFILE 1
$DATM 10/17/91 10:41
$RFMT $RIREG 7439
$RXN
    REACCS81 1017911041 7439
    2 1
$MOL
    REACCS8110179110412D 1 0.00380
    4}300000000000
    1}441100000
$MOL
    REACCS8110179110412D 1 0.00371
    0.00000
```



```
    5
$MOL
    REACCS8110179110412D 1 0.00374
        0.00000
        255
    9}900000000000000
    6 9 2 0 0 0 2
$DTYPE rxn:VARIATI ON(1):rxnTEXT(1)
$DATUM CrCl }
$DTYPE rxn:VARIATION(1):LITTEXT(1)
$DATUM A G Repin, Y Y Makarov-Zemlyanskii, Zur Russ Fiz-Chim, 44,
p.2360, 1974
$DTYPE rxn:VARIATION(1):CATALYST(1):REGNO
$DATUM $MFMT $MIREG 688
    REACCS8110179110412D 1 0.00371 0.00000 0
    430}000000000000
    1}441
$DTYPE rxn:VARIATION(1):PRODUCT(1):YIELD
$DATUM 70.0
$RFMT $RIREG 8410
$RXN
    REACCS81 1017911041 8410
    2 1
$MOL
```


Chapter 8

Atom Limit Enhancements

The formats presented in this chapter were added to support the chemical representation enhancements of ISIS 2.0 Desktop.

Phantom Extra Atom

The format for phantom extra atom information is as follows:
M PXA a aaxxxxx, xxxxyyyyy.yyyyzzzzz.zzzz H e...
where:
a a a $\quad=$ Index of (real) atom for attachment
$x y z \quad=$ Coordinates for the added atom
H
e...
= Atom symbol
= Additional text string (for example, the superatom label)

The FORTRAN format for the phantom extra atom entry is as follows:
(14, 4F10. 4, 1X, A3, 1X, A)
The bond to the added phantom atom is added as a crossing bond to the outermost Sgroup that contains atom aaa. Note this appendix supplies coordinates and up to 35 characters of 'label' that can be used for the ISIS/Desktop superatom conversion mechanism. The ISIS/Desktop uses this appendix to register hydrogen-only superatoms, which are often used as superatom leaving groups on the desktop, but which cannot be directly registered into host database. The hydrogen-only leaving groups are converted to PXA appendices for registration, and converted back when ISIS/Desktop reads the structure.

The following are limitations on phantom extra atom:

- Superatom nesting cases
- No bonded phantom atom-phantom atom support

Superatom Attachment Point

The format for superatom attachment point is as follows:

```
M SAP sssnn6 iii 000 cc
where:
sss = Index of superatom Sgroup
nn6 = Number of i i i,000,c entries on the line (6
    maximum)
    = Index of the attachment point atom
    = Index of atom in sss that leaves when i i i is
    substituted
    = 2 character attachment identifier (for example, 'H`
    or ' }T\mathrm{ ' for head/tail). No validation of any kind is
    performed, and ' ' is allowed. ISIS/Desktop uses the
    first character as the ID of the leaving group to
    attach if the bond between 000 and i i i is deleted,
    and uses the second character to indicate the
    sequence polarity:। for left, r for right, and x for
    none (a crosslink).
```

The bond i i i-000 is either a sequence bond, a sequence crosslink bond, or a bond to a leaving group that terminates a sequence or caps a crosslink bond. In some cases, this bond may have been deleted by the user, probably to perform a substructure search. In this case, 000 will be 0 . If the leaving group attached to i i c consists of only a hydrogen, the leaving group will be replaced by a Phantom Extra Atom, as previously described. In this case, $\mathrm{i} i \mathrm{i}$ is set equal to 000 as a signal to ISIS/Desktop that a hydrogen-only leaving group must be reattached to i i i .

The FORTRAN format for the superatom attachment point entry is as follows:
($14,14,1 X, A 2$)
An attachment point entry is one i i i ,000, c c triad.

Multiple M SAP lines are permitted for each superatom Sgroup to the maximum of the atom attachment limit. The order of the attachment entries is significant because the first i i i $, 000, \mathrm{c}$ becomes the first connection made when drawing to the collapsed superatom, and so forth.

Superatom Class

The format for superatom class is as follows:

```
M SCL sss d...
```

where:
sss $\quad=$ Index of superatom Sgroup
d... $=$ Text string (for example, PEPTIDE, ...) 69 characters maximum

This appendix identifies the class of the superatom Sgroup. It distinguishes, for example, peptide groups from nucleotides.

Large REGNO

The format for the regno appendix is as follows:

```
M REG r...
```

where:
$r \ldots \quad=$ Free format integer regno
This appendix supports overflow of the I6 regno field in the molfile header. If this appendix is present, the value of the regno in the molfile header is superceded.

Sgroup Bracket Style

The format for the Sgroup bracket style is as follows:

```
M SBTnn8 sss ttt ...
```

where:

```
sss = Index of Sgroup
```

$$
\begin{aligned}
\text { tt t } \quad= & \text { Bracket display style: } 0=\text { default, } 1=\text { curved } \\
& \text { (parenthetic) brackets }
\end{aligned}
$$

This appendix supports altering the display style of the Sgroup brackets.

Chapter 9

Moving CTfiles On and Off the Clipboard in ISIS

Clipboard Objects

The two objects named here as SK and mSK are used to move MDL sketches on and off the clipboard in ISIS. The names and contents of these with respect to the PC (MS Windows), Macintosh, and SGI (Motif) platforms are summarized in Table 9-1 and described in the ISS Sketch File Formats document. The additional object, CT, is also introduced. This contains structural information in CTfile format to facilitate structure exchanges between ISIS and non-MDL applications. The object, mSK , is not meaningful to platforms such as SGI, because Motif lacks a metafile format like the Macintosh or MS Windows metafile for storing drawing commands.

Table 9-1 ISIS clipboard objects-names and content

Clipboard Object		Macintosh Scrap Type	SGI Motif Clip-board Format	Contents	Available in ISIS version
SK	MDLSK	swsD	MDL_SKETCH	Buffered MDL sketch file	1.0 and up
CT	MDLCT	swsC	MDL_MO	Buffered MDL CTFile(molfile, RGile or rxnfile)	1.01 and up
mSK	OF_METARL - PICT	PICT		Picture with MDL sketch embedded	1.0 and up

ISIS will look for the objects listed in Table 9-1 in the order SK, CT, mSK and will take the first available for the image. The metafile, mSK, cannot be distinguished until after it is read from the clipboard, because the embedded file is not identified.

Note: CT has variable length lines. Each line is prefixed with one byte containing the length of the line. Thus, a blank line contains one byte of zero.

Hints on Creating a Reader/Writer For CT

Separate input/ output routines from the CTfile interpreter.
Use open/read/close routines to read the contents of the buffer from the clipboard line by line.

Copying from the Clipboard

Look for CT on the clipboard. If present and the first line contains:

- " $\$ R X N "$ ", the file is a rxnfile
- "\$MDL", the file is an RGfile
- Otherwise, the file is a molfile

Alternatively, you can develop your own procedure for reading a sketch file (SK* in Figure 9-1).

Figure 9-1 Transfer options

* Employing user-supplied file reader or writer
** Except SGI

Copying to the clipboard

Clear the clipboard of any existing data.
You may choose from among the following options recognizable by ISIS:

- Post a CT containing a buffered CTfile (rxnfile, RGfile or molfile) (with Version 1.01 or later of ISIS).
- Post an SK containing a buffered sketch file.
- Post your own rendering as a metafile or PICT image (PC and Macintosh, respectively) recognizable only by ISIS/Draw. However, this does not preserve the chemistry.

Sample Code For Copying or Pasting a CTfile in MS Windows

```
|* cutpaste.c */
extern HWND hwnd; I* handle to application's main window */
static int ctFormat;
|*..........................................................................................
InitClipBoard()
{
    ctFormat = RegisterClipboardFormat("MDLCT");
```



```
CopyToClipboard(HANDLE ghCTBuffer)
| *ghCTBuffer is a global handle to a buffer containing the ASCII ctfile. Do not
delete it because it becomes the property of the clipboard after the
SetClipboardData() call. */
{
    if (OpenClipboard(hwnd)) {
        EmptyClipboard();
        SetClipboardData(ctFormat, ghCTBuffer);
        CloseClipboard();
    }
}
```



```
PasteFromClipboard()
{
    HANDLE ghCTBuffer = NULL;
    if (IsClipboardFormatAvailable(ctFormat)) {
        if (OpenClipboard(hwnd)) {
            ghCTBuffer = GetClipboardData(ctFormat);
                CloseClipboard();
        }
    }
|*ghCTBuffer is a global handle to a buffer containing the ASCII ctfile. It is
still the property of the clipboard so do not delete or alter it. */
    return(ghCTBuffer);
} 1*
*/
```


Extended File Formats

Chapter 10

The Extended Molfile Format

```
    no
structure
    molfile
    appendix
    Cab
```

The extended (V3000) molfile consists of a regular molfile "no structure" followed by a single molfile appendix that contains the body of the connection table (Ctab). Figure 10-1 shows both an alanine structure and the extended molfile corresponding to it. See Figure 2-1 for the V2000 version of this same structure.

Figure 10-1 Extended molfile organization illustrated using alanine

L-Alanine

Note that the "no structure" is flagged with the "V3000" instead of the "V2000" version stamp.

There are two other changes to the header in addition to the version:

- The number of appendix lines is always written as 999, regardless of how many there actually are. (All current readers will disregard the count and stop at "M END".)
- The "dimensional code" is maintained more explicitly. Thus "3D" really means 3D, although "2D" will be interpreted as 3D if any non-zero Z coordinates are found.

Unlike the V2000 molfile, the V3000 extended Rgroup molfile has the same header format as a non-Rgroup molfile.

Note: Do not create a molfile with a pre-V3000 Rgroup header ("\$MDL", and so forth) but with V3000 Ctab blocks. This is not allowed. A pre-V2000 Rgroup molfile can only have embedded molfiles that are also pre-V3000 versions, for example, the version is either "V2000" or " ".

Specifications For Atom and Bond Descriptions

The general syntax of an entry is:

```
M V30 key posval posval ... [keyword=value] [keyword=value] ...
or
M V30 BEGIN key [blockname]
M V30 posval posval ... keyword=value keyword=value ...
M V30 END key
```

Each line must begin with "M V30" with the two blank spaces after M and one blank space after 30. Following this is a list of zero or more required positional values (posval). Optional values may follow which use a 'KEYWORD=value’ format. Items are separated by white space. There can also be white space preceding the first item. Trailing white space is ignored.

The value of a keyword can be a list containing two or more values:
KEYWORD=(N vall val $2 \ldots$... valN)
where N specifies the number of items that follow.
Values (posval, value, or val 1, and so forth) can be strings. Strings that contain blank spaces or start with left parenthesis or double quote, must be surrounded by double quotes. A double quote may be entered literally by doubling it.

Each entry is one line of no more than 80 characters. To allow continuation when the 80 -character line is too short, use a dash (-) as the last character. When read, the line is concatenated with the next line by removing the dash and stripping the initial "M V30" from the following line. For example:

```
M V30 10 20 30 "abc.
M V30 def"
```

is read as:

```
M V30 10 20 30 "abc def"
```

Generally, each section of the molfile is enclosed in a block that consists of lines such as:

```
M V30 BEGIN key [blockname]
M V30 END key
```

The 'key' value defines the kind of block, for example, CTAB, ATOM, or BOND. Depending upon the type of block, there may or may not be values on the BEGIN line.

Conventions

The new format conventions used in this chapter are as follows:

UPPERCASE
lowercase
[]

Literal text, to be entered as shown. Only the position of "M V30" is significant; white space may be added anywhere else to improve readability. Note that both lower- and uppercase characters, or any combination of them, are acceptable for literals. They are shown here in uppercase only for readability.

A token, which is defined elsewhere.
An optional item. Do not include the brackets.
An optional item, where there may be zero, one, two, or more of the item.

Separates two or more options, only one of which is valid.

Separates two or more items. Either or both may appear in any order.

Braces are used for grouping. They indicate indefinite or definite repeat.

The Extended Connection Table

The features of the extended connection table are described in this section.

CTAB block

A Ctab block defines the basic connection table, which is defined as:

```
M V30 BEGIN CTAB [ctabname]
counts-line
atom-block
[bond-block]
[sgroup-block]
[3d-block]
[link-line]*
M V30 END CTAB
```

The atom block, like the counts line, is required. The Sgroup block, 3D block, and link lines may occur in any order after the atom and bond blocks. The counts line, atom block, and bond block must appear in the order indicated.

Counts line

A counts line is required, and must be first. It specifies the number of atoms, bonds, 3D objects, and Sgroups. It also specifies whether or not the CHIRAL flag is set. Optionally, the counts line can specify molregno. This is only used when the regno exceeds 999999 (the limit of the format in the molfile header line). The format of the counts line is:

```
M V30 COUNTS na nb nsg n3d chiral [REGNO=regno]
```

where:

na	$=$ number of atoms
nb	$=$ number of bonds
nsg	$=$ number of Sgroups
n3d	$=$ number of $3 D$ constraints
chiral	$=1$ if molecule is chiral, o if not
regno	$=$ molecule or model regno

Atom block

An atom block specifies all node information for the connection table. It must precede the bond block. It has the following format:

```
M V30 BEGIN ATOM
M V30 index type x y z aamap .
M V30 [CHG=val] [RAD=val] [CFG=val] [MASS=val]
M V30 [VAL=val]
M V30 [HCOUNT=val] [STBOX=val] [INVRET=val] [EXACHG=val].
M V30 [SUBST=val] [UNSAT=val] [RBCNT=val].
M V30 [ATTCHPT=val].
M V30 [RGROUPS=(nvals val [val ...])].
M V30 [ATTCHORD=(nvals nbr1 val1 [nbr2 val2 ...])].
M V30 END ATOM
```

The values are described in Table 10-1.
Table 10-1 Meaning of values in the atom block

Field	Meaning	Values	Notes
index	Atom index	Integer > 0	Identifies atoms. The actual value of the index does not matter as long as each index is unique to each atom. However, extremely large numbers used as indexes can cause the program to fail to allocate memory for the correspondence array.
type	Atom type	Type = reserved atom or atom or [NOT] '['atom, atom,...']'	A character string. If the string contains white space, it must be quoted. It can be a single atom or an atom list enclosed in square brackets with an optional preceding NOT.
		where reserved atom =	
		R\# = Rgroup	
		A = "any" atom	
		$\mathrm{Q}=$ any atom but Cor H	
		Atom = character string	For example, 'C' or ' O '
x y z	Atom coordinates	Angstroms	

Table 10-1 Meaning of values in the atom block (Continued)

Field	Meaning	Values	Notes
a a map	Atom-atom mapping	$0=$ no mapping	Reaction property
		$>0=$ mapped atom	
CHG	Atom charge	Integer	Same range as V2000.
		$0=$ none (default)	
RAD	Atom radical	$0=$ none (default)	
		1 = singlet	
		$2=$ doublet	
		$3=$ triplet	
CFG	Stereo configuration	$0=$ none (default)	
		1 = odd parity	
		2 = even parity	
		3 = either parity	
MASS	Atomic weight	Integer > 0	Default = natural abundance
VAL	Valence	Integer >0 or	Abnormal valence
		$0=$ none (default)	
		-1 = zero	
HCOUNT	Query hydrogen count	Integer > 0 or	Same maximum as V2000.
		$0=$ not specified (default)	
		-1 = zero	
STBOX	Stero box	$0=$ ignore the configuration of this double bond atom (default)	Both atoms of a double bond must be marked to search double bond stereochemistry
		1 = consider the stereo configuration of this double bond atom	
I NVRET	Configuration inversion	$0=$ none (default)	Reaction property
		1 = configuration inverts	
		2 = configuration retained	
EXACHG	Exact change	$\begin{aligned} & 0=\text { property not applied } \\ & \text { (default) } \end{aligned}$	Reaction property
		1 = exact change as displayed in the reaction	

Table 10-1 Meaning of values in the atom block (Continued)

Field	Meaning	Values	Notes
SUBST	Query substitution count	Integer >0 or	Same maximum as V2000.
		$0=$ not specified (default)	
		-1 = none	
UNSAT	Query unsaturation flag	$0=$ not specified (default)	
		1 = unsaturated	
RBCNT	Query ring bond count	Integer >0 or	Same maximum as V2000.
		$0=$ not specified (default)	
		-1 = none	
ATTCHPT	Rgroup member attachment points	Attachment points on member:	When the Rgroup member atom has two attachment points, the atom with the lowest index number attaches to the first attachment point
		-1 = first and second site	
		1 = first site only	
RGROUPS	nvals is the number of Rgroups that comprise this R\# atom. val is the Rgroup number.	Integer > 0	
ATTCHORD	nvals is the number of values that follow on the ATTCHORD line	Integer > 0	A list of atom neighbor index and atom neighbor value pairs that identify the attachment order information at the R\# atom
	nbr 1 is atom neighbor index \#1, nbr 2 is index \#2...		
	val 1 is the attachment order for thenbr 1 attachment...		

Bond block

A bond block specifies all edge information for the connection table. It must precede the Sgroup or 3D blocks. Its format is:

```
M V30 BEGIN BOND
M V3O index type atoml atom2 [CFG=val] [TOPO=val] [RXCTR=val] [STBOX=val]
M V3O END BOND
```

where the values are described in Table 10-2.
Table 10-2 Meaning of values in the bond block

Field	Meaning	Values	Notes
index	Bond index	Integer > 0	The actual value of the index does not matter as long as all are unique. However, extremely large numbers used as indexes can cause the program to fail to allocate memory for the correspondence array.
type	Bond type	Integer:	Types 4 through 8 are for queries only.
		1 = single	
		2 = double	
		3 = triple	
		4 = aromatic	
		$5=$ single or double	
		$6=$ single or aromatic	
		7 = double or aromatic	
		$8=$ any	
at om1, at om2	Atom indexes	Integer > 0	Atom1 and Atom2 are bond end points.
CFG	Bond configuration	$0=$ none (default)	
		1 = up	
		2 = either	
		3 = down	
TOPO	Query property	$0=$ not specified (default)	
		1 = ring	

Table 10-2 Meaning of values in the bond block (Continued)

Field	Meaning	Values	Notes
		2 = chain	
RXCTR	Reacting center status	0 = unmarked (default)	
		-1 = not a reacting center	
		1 = generic reacting center	
		Additional:	
		2 = no change	
		4 = bond made or broken	
		$8=$ bond order changes	
		$12=(4+8)$ bond made or broken and changes	
		$5=(4+1), 9=(8+1)$ and	
		$13=(12+1)$ are also possible	
STBOX	Stereo box	0 = ignore the configuration of this double bond (default)	A double bond must be marked to search double bond stereochemistry
		1 = consider the stereo configuration of this double bond	

Link atom line

There is one link atom line for each link atom in the Ctab. A link atom line has the format:

M V30 LINKNODE mi nrep maxrep nbonds inatom outatom [inatom outatom...]

Table 10-3 Meaning of values in link lines

Field	Meaning	Values	Notes
minrep	Minimum number of group repetitions.	1	For future expansion.
			Not currently used.
maxrep	Maximum number of group repetitions.	Integer > 0	
nbonds	Number of directed bonds defining the group.	nbonds = \# of pairs of inatom-outatom tuples	Number of tuples is usually two but may be one for link nodes with an attachment point.
inatom	Atom index of atom in the repeating group.	Integer > 0	
outatom	Atom index of atom bonded to i nat om, but outside of repeating group.	Integer > 0	

Sgroup block

The Sgroup block contains general Sgroup information and information on each Sgroup structure as shown in Figure 10-2. For the V2000 version of this Sgroup structure and connection table, see Figure 2-2.

Figure 10-2 Connection table organization of an Sgroup structure

Polymer

An Sgroup block defines all Sgroups in the molecule, including superatoms. The format is as follows:

```
M V30 BEGIN SGROUP
[M V30 DEFAULT [CLASS=class].]
M V3O index type extindex .
M V30 [ATOMS=(natoms atom [atom ...])].
M V30 [XBONDS=(nxbonds xbond [xbond ...])].
M V30 [CBONDS=(ncbonds cbond [cbond ...])] .
M V30 [PATOMS=(npatoms patom [patom ...])].
M V3O [SUBTYPE=subtype] [MULT=mult].
M V30 [CONNECT=connect] [PARENT=parent] [COMPNO=compno] .
M V30 [XBHEAD=(nxbonds xbond [xbond ...])] .
M V30 [XBCORR=(nxbpairs xb1 xb2 [xb1 xb2 ...])].
M V30 [LABEL=| abel] .
M V30 [BRKXYZ=(9 bx1 by1 bz1 bx2 by2 bz2 bx3 by3 bz3])* .
M V30 [ESTATE=estate] [CSTATE=(4 xbond cbvx cbvy cbvz)]* .
M V30 [FIELDNAME=fieldname] [FIELDINFO=fieldinfo] .
M V30 [FIELDDISP=fielddisp].
M V30 [QUERYTYPE=querytype] [QUERYOP=queryop].
M V30 [FIELDDATA=fielddata] ... .
M V30 [CLASS=class].
M V30 [SAP=(3 aidx |vidx id)]*.
M V30 [BRKTYP=bracketType] .
M V30 END SGROUP
```

The DEFAULT field provides a way to specify default values for keyword options. The same keyword options and values as defined in Table 10-4.

Table 10-4 Meaning of values in the Sgroup block

Field	Meaning	Values	Notes
i ndex	Sgroup index	integer >0	The actual value of the index does not matter as long as all indexes are unique. However, extremely large numbers used as indexes can cause the program to fail to allocate memory for the correspondence array.
t y pe	Sgroup type	String. Only first 3 letters are significant:	
	SUPeratom		
	MULtiple		

Table 10-4 Meaning of values in the Sgroup block (Continued)

Field	Meaning	Values	Notes
		SRU	
		MONomer	
		COPolymer	
		CROsslink	
		MODification	
		GRAft	
		COMponent	
		MIXture	
		FORmulation	
		DATa	
		GENeric	
extindex	External index value	Integer => 0:	Use 0 to autogenerate a number.
		If 0 , positive integer assigned	This is the V2000 Sgroup label.
ATOMS	natoms is the number of atoms that define the Sgroup.	Integer > 0	
	a $t \mathrm{~m}$ is the atom index.	Integer > 0	
XBONDS	nxbonds is the number of crossing bonds.	Integer > 0	
	xbond is the crossing-bond index.	Integer > 0	
CBONDS	ncbonds is the number of containment bonds.	Integer > 0	Only used for Data Sgroups.
	cbond is the containment-bond index.	Integer > 0	

Table 10-4 Meaning of values in the Sgroup block (Continued)

Field	Meaning	Values	Notes
PATOMS	$n p$ at om is the number of paradigmatic repeating unit atoms. pat om is the atom index of an atom in the paradigmatic repeating unit for a multiple group.	Integer > 0	This field is expected to become obsolete and is retained for compatibility with MACCS-II. The field is only used for multiple groups.
SUBTYPE	subtype is the Sgroup subtype.	String. Only the first 3 letters are significant: ALTernate RANdom BLOck	
MULT	mul t is themultiple group multiplier.	Integer > 0	
CONNECT	connect is the connectivity.	String values are as follows: EU (default) HH HT	The default, if missing, is EU.The MDL V2000 writer never writes an EU entry.
PARENT	parent is the parent Sgroup index.	Integer > 0	
COMPNO	compno is the component order number.	Integer > 0	
XBHEAD	nxbonds is the number of crossing bonds that cross the "head" bracket.	Integer > 0	
	xbond is the crossing-bond index.	Integer > 0	If XBHEAD is missing, no bonds are paired as the head or tail of the repeating unit.

Table 10-4 Meaning of values in the Sgroup block (Continued)

Field	Meaning	Values	Notes
XBCORR	nxbpairs	$2 x$ the number of pairs of crossing-bond correspondence, that is, the number of values in list.	
	$x b_{1}-x b 2$ is the pairs of crossing-bond correspondence, that is, xb 1 connects to $\times \mathrm{b} 2$.	Integer > 0	
LABEL	label is the display label for this Sgroup.	String	For example, superatom name
BRKXYZ	bx1 - bz3 are the double ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) display coordinates in each bracket.	Angstroms	By specifying 3 triples, the format allows a 3D display. However, only the first two (X, Y) coordinates are currently used. The Z value and last (X, Y) coordinates are currently ignored and should be set to zero.
ESTATE	estate is the expanded display state information for superatoms.	String $E=$ expanded superatom or multiple group	Only superatoms and multiple groups (shortcuts) in an expanded internal state are supported. This field defines whether a superatom or multiple group is displayed as expanded or contracted. This field is expected to become obsolete.
CSTATE	xbond is the crossing bond of the expanded superatom.	Integer > 0	Display vector information for the contracted superatom.
	$c b v x$ - cubz is the vector to contracted superatom.	Angstroms	Only present for expanded superatoms. One CSTATE entry per crossing bond.
FIELDNAME	fiel dname is the name of data field for Data Sgroup.	String	

Table 10-4 Meaning of values in the Sgroup block (Continued)

Field	Meaning	Values	Notes
FIELDINFO	fieldinfo is the program-specific field information.	Free-format string	Example: In MAOCS-II this is: "<type> <units/format>"
FIELDDISP	fielddisp is the Data Sgroup field display information.	Freeformat string	This string is interpreted by V3000 as identical to V2000 appendix for Data Sgroup display ('M SDD') except for the index value.
QUERYTYPE	querytype is the type of query or no query if missing.	String	
		$\begin{aligned} & \prime \prime \text { ' = not aquery (default) } \\ & \text { 'MQ = MAOCS-II query } \\ & \prime I Q=\text { ISIS query } \\ & \prime<p>Q=\text { program> query } \end{aligned}$	
QUERYOP	queryop is the query operator.	String.	Example: "=" or "LIKE" in ISIS
		ISIS: query operator	
		MACCS-II: blank or missing	
FIELDDATA	fielddata is the query or field data.	Freeformat string	Only one entry per query, but can be more than one for actual data The order of the entries is important.
CLASS	class is the character string for superatom class.	String	Example: P-PTIDE
SAP	ai $d x$ is the index of attachment point or potential attachment point atom.	Integer > 0	
	I vidx is the index of leaving atom.	Allowed integers are:	

Table 10-4 Meaning of values in the Sgroup block (Continued)

Correspondence with existing V2000 appendices:

```
M STY = type
M SST = SUBTYPE
M SLB = extindex
M SCN = CONNECT
M SDS = ESTATE
M SAL = ATOMS
M SBL = XBONDS or CBONDS
M SPA = PATOMS
M SMT = LABEL and MULT
M CRS = XBHEAD, XBCORR
M SDI = BRKXYZ
M SBV = CSTATE
M SDT = FIELDNAME, FIELDINFO, QUERYTYPE, QUERYOP
M SDD = FIELDDISP
M SCD = (not required)
M SED = FIELDDATA
M SPL = PARENT
```

```
M SNC = COMPNO
M SAP = SAP
M SCL = CLASS
M SBT = BRKTYP
```


3D block

The 3D block contains 3D information as shown in Figure 10-3. For the V2000 version of this 3D query and its connection table, see Figure 2-3.

Figure 10-3 Connection table organization of a 3D query

3D Query

A 3D block specifies information for all 3D objects in the connection table. It must follow the atom and bond blocks. As in V2000 molfiles, there can be only one fixed-atom constraint.

The format of the 3D block is as follows:

```
M V30 BEGIN OBJ3D
M V30 index typ color name valuel value2 .
M V30 BASIS=(nbvals bval [bval ...]) .
M V30 [ALLOW=(nvals val [val ...])] [PNTDIR=val] [ANGDIR=val] .
M V30 [UNCONNOK=val] [DATA=strval] .
M V30 [COMMENT=comment]
M V30 END OBJ3D
```

Table 10-5 Meaning of values in the 3D block

Field	Meaning	Values	Notes
index	3D object index	Integer > 0	The actual value of the index does not matter as long as all indexes are unique. However, extremely large numbers used as indexes can cause the program to fail to allocate memory for the correspondence array.
typ	Object type	Integer < 0 for geometric constraints for data constraints Integer >0 are field IDs	This format is the same as V2000.
color	Color value	Integer > 0	
na me	Object name or, for data query, the field name.	String	
valuel	Distance, radius, deviation, or minimum value.	Hoating point, value1 $=0$ if constraint has no floating values	
value 2	Maximum value for range constraints.	Foating point, value2 $=0$ if not a range constraint	
BASIS	nbvals is the number of objects in basis.	Integer > 0	

Table 10-5 Meaning of values in the 3D block (Continued)

Field	Meaning	Values	Notes
	bval is the atom number or 3D object index.	Integer or OBD.integer	For objects where order is important, for example, in an angle constructed from three points, the order must bethe same as in V2000 molfiles.
ALLOW	nvals is the number of atoms allowed in an exclusion sphere. val is the atom number.	Integer >0 Integer >0	
PNTDIR		$\begin{aligned} & 0=\text { point has no direction } \\ & 1=\text { point has direction } \end{aligned}$	
ANGDI R		$0=$ dihedral angle has no direction 1 = dihedral angle has direction	MACOS-II uses 'Chiral'.
UNCONNOK		$\begin{aligned} & 0=\text { unconnected atoms are not } \\ & \text { OK } \\ & 1=\text { unconnected atoms are OK } \end{aligned}$	
DATA	strval is the data query string	String	
COMMENT	string comment	String. Normally uses the MAOCS-II DASP, DISP, and BOX values	Same as V2000 molfile

The Extended Rgroup Query Molfile

A single molecule or Rgroup molecule connection table. The header is contained in the normal header location, that is, in the first three lines of the file. The body of the new molecule is contained in new appendixes, organized as follows:

A molecule block consists of a main Ctab, plus optionally one or more Rgroup definitions.

```
ctab-block
```

[rgroup-block]*

Rgroup block

The Rgroup file shown in Figure $10-4$ corresponds to the following Rgroup query. For the V2000 version of the Rgroup query and its connection table, see Figure 4-1.

Figure 10-4 Connection table organization of an Rgroup query (Continued on next page)

IFR1 THENR2

GSMACCS-1107139508292D $10.00353 \quad 0.00000 \quad 0$

An Rgroup block defines one Rgroup. Each Ctab block specifies one member.

```
M V30 BEGIN RGROUP rgroup-number
[rgroup-Iogic-line]
ctab-block
[ctab-block]*
M V30 END RGROUP
```

Table 10-6 Meaning of values in the Rgroup block

Field	Meaning	Values	Notes
rgroup-number	Index of this rgroup	Integer >0	

Rgroup logic lines

There is zero or one Rgroup logic line for each Rgroup in the molecule. If present, the Rgroup logic line specifies if-then logic between Rgroups, the convention about unfilled valence sites, and the Rgroup occurrence information. Its format is:

M V30 RLOGIC thenR RestH Occur
Table 10-7 Meaning of values in Rgroup logic line

Field	Meaning	Values	Notes
t hen R	Number of a "then" Rgroup	$0=$ none (default)	
Rest H	Attachment(s) at Rgroup position	$0=$ off, that is, any molecule fragment at any unsatisfied Rgroup location (default) $1=$ only hydrogen or a member of Rgroup is allowed	Similar to MACOS-II and
Oc cur	String specifying number (range) of Rgroup occurrence sites that need to be satisfied.	String	ISIS: $[\mathrm{N}[,[\mathrm{N}[, \ldots]]]]$

