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Description 
 
PEA, Pack Encrypt Authenticate, is a general purpose archiving format, featuring compression and multiple volume 
output, aiming to offer a flexible security model trough Authenticated Encryption, that provides both privacy and 
authentication of the data, and redundant integrity checks ranging from checksums to cryptographically strong hashes, 
defining three different levels of communication to control: streams, objects, volumes. 
Stream control level is actually the only level featuring Authenticated Encryption option while integrity checking can be 
performed at each of the three levels; each one of the three levels of control can be omitted to fit particular user’s needs. 
PEA archive data (except for archive header) is organized in objects; objects are organized in streams (1.0 file format 
allow archives containing a single stream while 2.0 allow unlimited streams), being a stream a group of objects sharing 
the same security constrains, satisfied by the stream level checking algorithm (checksum, hash or AE). 
Stream beginning is marked by a “stream header” type of object and stream termination is marked by a “end of stream” 
type of object or by “end of archive” if the stream is the last one in the archive; defining PEA 1.0 file format only archives 
containing a single stream, it’s always terminated by an “end of archive” object. 
First field of an object is the object’s input name size (word sized), when the field is nonzero, the archive object has an 
associated input name, that means the archive object maps an input object (file or dir) from the system, otherwise if the 
name size is zero it means the archive object is a trigger, a functional field for PEA program (as aforementioned “stream 
header” , “end of stream” and “end of archive” objects), and that no external data is mapped fro the system to the archive 
object. 
Objects of “trigger” class are not checked by object level check, while archive objects with associated input object (“input 
object” class) are checked; both classes of objects are checked by stream level check. 
If the object is a trigger, the second field is the trigger type, 4 byte sized; defined types are: 

• POD (followed by $00 byte): “stream header” type of object, marks the beginning of the stream, it is followed by 4 
byte-sized fields defining stream properties (compression scheme, stream control scheme, single objects control 
scheme, stream-specific error correcting strategy) and, if Authenticated Encryption is used for stream control, by 
a 16 bit field containing an header similar to the one defined for Wolfgang Ehrhardt’s FCA cryptographic 
application:  

o 1 byte FCA sig ($FC): in PEA file format it is zeroed since file format disambiguation is performed on 
archive’s header rather than on this field; 

o 1 byte flags field: in PEA file format it is zeroed since the information about encryption scheme is given in 
“stream header” area; 

o 12 byte (96 bit) pseudorandom salt; 
o 2 byte key verification field; 

• EOS (followed by $00 byte): “end of stream” type, marks the end of a stream, it’s followed by the stream control 
tag (variable sized), exists only in 2.0 file format specification; 

• EOA (followed by $00 byte): “end of archive”; and marks the end of the last stream of the archive, it’s followed by 
the stream control tag and from the last volume control tag, then the archive ends. 

• MSG: triggers a message, the 4th byte define the size in byte of the message, allowing short messages up to 255 
bytes; if the 4th byte is $00, the message is a long message and in this case next 4 byte field (dword) define the 
size in byte of the message. It may be useful to insert comments or metadata (i.e. graphic, list of stream content 
to improve user experience allowing faster stream content preview etc). 
MSG type exists only in 2.0 file format specification. 

If the archive object is not a trigger, the second field (variable sized, with size defined by previous field) is input object’s 
name, the qualified name of the file or dir in the system where the archive is created, followed by 4 byte (dword) sized 
field for object’s last modification time and another 4 byte (dword) sized field for object attributes. 
If the input object is a dir, no more fields are needed by PEA, next field will be the object’s control tag; otherwise if the 
input object is a file, the next object’s field is 8 byte (qword) sized file size, allowing max input size of 2^64 byte. 
If the size is zero, the file is empty and next filed will be the object’s control tag; otherwise next field will be the file content 
(structure of that data may vary due to the compression model used), and finally the object’s control tag. 
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Image 1: PEA version 1 revision 0 object taxonomy flowchart 
 
Object control is performed on all input objects, on uncompressed and unencrypted content (only if the object is a 
nonempty file) and all associated data (qualified name, object last modification time, object attributes and finally file size if 
object is a file). 
Stream level control instead allow to embed different objects in different archive areas (streams) each with different 
control features and/or, in case of encryption, with different passwords (not mandatory different, since unique salt is used 
for each stream).  
PEA 1.0 file format allow archives containing a single stream while PEA 2.0 format allows unlimited streams in a single 
archive, hypothetically even a distinct stream for each distinct object, the space overhead would be of 16 byte per object 
(POD and EOS objects) plus size of cryptographic subheader and authentication tag. 
Streams could easily be nested (simply making the EOS tag closes the last opened stream) however this will have a bad 
performance impact since for each nesting level stream check and object control check would be duplicated, so PEA 2.0 
format define that streams will not be nested (it’s necessary to close the n-th stream with EOS trigger before opening the 
n-th+1 stream). 
PEA stream control doesn’t apply to raw input data but rather to data after compression (if used), plus all associated data 
including object level control tags; EOS or EOA trigger is included. 
The stream level check includes also POD object (not including, if used, salt and password verifier in cryptographic 
subheader since are jet part of the authenticated encryption) and, for the first stream (or for the sole stream for PEA 1.0 
format), the archive header; in that way all data included in the archive is subject to stream level check. 
If stream level check is checksum or hash based, content of that area (POD object and archive header for first stream) is 
passed to the function as first block to check. 
If AE is used, that area is appended to the passphrase and passed to the key derivation function, so data corruption in the 
area will be noticed at key verification stage, avoiding the needing to perform the full decryption process with unchecked 
parameters. 
Using AE at stream level ckeck means also that digests of input objects are kept private, otherwise digests could be 
useful (for small objects, i.e. dirs, empty or small files) to cast meaningful guesses on object’s content (data and 
associated data). 
Volume level control is finalized and restarted for each volume and is performed on all volume’s data after all PEA steps 
(so on encrypted and compressed data, if those features are used), allowing integrity check of each volume without 
needing to know other volumes and without needing to perform other PEA steps before volume checking, so it can be 
used to decide if to repudiate or accept an incoming volume due to it’s integrity before starting unpacking the PEA 
archive, only providing that the check algorithm is known. 
If the volume control algorithm is not known to the user (i.e. the parts didn’t agreed on a communication standard defining 
a fixed volume control strategy), the first volume is needed since the check algorithm is declared in the archive header, 
which is not repeated in each volume. 
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PEA 1.0 file format details 
 
Archive header, 10 byte :  

1 byte “magic byte” field for file format disambiguation: $EA; 
1 byte version number field; 
1 byte revision number field; 
1 byte for volume control scheme; 
1 byte for archive-wide error correcting scheme; 
1 byte declaring the OS were the stream was built; 
1 byte declaring OS date and time encoding; 
1 byte declaring objects name character encoding; 
1 byte declaring CPU type (encoded in 7 bit) and endianness (in msb); 
1 byte reserved for future use 

Stream header, 10 byte: 
word object name size field, $0000, declaring  the object is a trigger; 
4 byte trigger type filed: POD$00, marking beginning of the stream; 
4 byte area with declaration of stream’s properties (4 1 byte fields): 

compression scheme; 
stream control scheme; 
single objects control scheme; 
stream-wide error correcting scheme. 

- if Authenticated Encryption is used, the stream header is followed by a 16 byte cryptographic subheader, similar 
to the one defined in Wolfgang Ehrhardt’s FCA cryptographic application: 

o 1 byte zeroed (was FCA sig ($FC)); 
o 1 byte zeroed (was flags field); 
o 12 byte (96 bit) pseudorandom salt; 
o word key verification field 

Area of objects belonging to the stream:  
object name size: word;  
if size is > 0, the object belong to “input object” class and following fields apply; 

- object name (variable sized), last character is conventionally the DirectorySeparator if the object is a directory; 
- object last modification time: 4 byte (possibility to restore this information vary between host systems); 
- object attributes: 4 byte (possibility to restore them vary between host systems); if the object is a file the following 

fields apply: 
o file size: qword; if size is >0 the file is not empty and the following field apply: 

� file data (variable sized)   
- object control tag (variable sized, depending from the single object control algorithm), generated from the all the 

featured fields between object name and object control tag (in other words, all object’s data and associated data, 
uncompressed and unencrypted); 

else (if name size is 0) the object belongs to “trigger object” class, the following filed apply; 
- trigger type 4 byte; 

In PEA 1.0 there may only be declared EOA$00, triggering end of the archive: close the stream, check or generate the 
stream control tag, check or generate the last volume tag and stop; 
Volume control tags break the flux of aforementioned fields appearing at –n bit from the end of each volume where n is 
the size of volume level control tag. 
At the present state of documentation please refer to the sourcecode for details about values for declaring control 
algorithms, compression schemes and so on. 
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Image 2: PEA version 1 revision 0 file format flowchart (archive saved as single volume) 
 
 
 

PEA 2.0 file format details 
 
PEA 2.0 file format allow unlimited number of streams, not nested, each one closed by a EOS tag but the last one, closed 
by EOA tag. 
First stream authenticates also the archive’s header, as in PEA 1.0. 
The format allows MSG type of triggers, meant for embedding meta-information where needed in the archive. 
2.* file format is aimed to be retrocompatible with 1.*, being a PEA 1.* format archive a special case of the more general 
2.* format, containing a single stream and no messages. 
Please note that PEA 2.0 file format specifications are actually not finalized and may undergo to further revisions before 
being usable and used. 
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PEA file format’s and implementation’s limitations 
 
feature PEA file format  

 
Current implementation 

Archive 
Max archive size unlimited up to 999999 volumes of 2^64-1 byte each; using 

128 bit block encryption it would be safe not to 
encrypt more than 2^64 byte with same key, 
better staying one or more orders of magnitude 
below 

Stream number 1.0: single stream;  
2.0 unlimited number of streams; 

Single stream (1.0 file format) 

Output 
Security Optional Authenticated Encryption, at stream level only. 
Integrity check AE tag or hash or checksum at stream level, hash or checksum for input objects and output volumes 
Error correction No scheme featured 
Communication recovery Independent volume control check allow to 

identify corrupted volumes (first volume may be 
needed to know volume check algorithm) 

No specific tool developed; volume check is done 
during extraction and then, allowing to repeat 
download only of corrupted volumes 

Data recovery Stream control tags allow to recognize correct 
streams, if better granularity is needed object 
control tags allow to recognize correct objects; 
input object names and POD trigger allow to 
identify objects and stream between the archive 
data; 

No specific tool developed to try error resistant 
data extraction, however object check errors are 
reported to identify corrupted and non corrupted 
data if the extraction is successful 

Support for multi volume output Native, requires a single pass 
Volume number 1..unlimited 1..999999 (counter in output name) 
Volume size Volume tag size +1.. unlimited; first volume must 

contain at least 10 byte of data to allow parsing of 
the archive header, to allow unpacking application 
to  calculate volume tag size 

Volume tag size +1.. 2^64-1 (qword variable) ; 
first volume must contain at least 10 byte of data 

Compression Native, requires single pass; schemes: 
PCOMPRESS0: no compression; PCOMPRESS1..3 based on deflate using zlib's compres/uncompres, 
level 3, 6 and 9 respectively (see PCOMPRESS chapter) 

Solid archive Not implemented compression modes featuring the possibility of creating solid archive 
Input 

Input types 1.0: files and dirs; 
2.0: files, dirs, metadata stored as messages 
triggers 

Files and dirs (1.0) 

Input objects number 1..unlimited Host system memory limited (input object list is 
stored in a dynamic array of strings) 

Input object size (of single objects) 0..2^64-1 0..2^64-1 
Input object qualified name size (size 0 
mean that archive object is a trigger, 
no input object mapped to the archive 
object) 

1..2^16-1 1..32K (exceeding needs, longer values are 
considered errors) 

Metadata Objects attributes and last modification time, 
optionally comments and any kind of meta content 
using messages 

Save object attributes and object last modification 
time. Restore only object attributes (on Windows), 
nothing on *x 

 
Notes on input object name character encoding 
Current PEA implementation works only on ANSI-encoded object names (not support UNICODE encoding), however PEA 
file format allow a field in the archive header to declare the character encoding for object names. 
With 16 byte-wide field for object name defined by PEA file format the room should be enough for any practical use, even 
with encoding using more bytes per character (bytes necessary to encode characters can be stored in an array of byte up 
to 64KB -1 byte); however implementing that feature would require a careful evaluation of validity of object names for the 
system where the archive is targeted to be restored. 
 
Notes on volume sizes 

- Volumes can be arbitrarily sized, however they need to be at least one byte wider than volume control tag, in 
order that at least one byte of input data is stored in the volume. 

- Since the unpacking application need to know what is the volume control algorithm used, in order to be able to 
distinguish between input data and volume tag data, PEA file format defines mandatory that first volume of the 
archive must contain at least 10 bytes (so, sized 10+volume control tag size bytes) to allow all information in 
archive header (that contains volume control algorithms, that define volume control tag size) to be red at once. 

- Volumes could have different sizes. 
 
 
 

PCOMPRESS compression scheme 
 
PCOMPRESS0 is a non compression scheme; it will simply copy data from the input to the output. 
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PCOMPRESS1..3 is a deflate-based scheme of compression that allows decompression of single blocks without need of 
decompressing preceding blocks: that slightly degrades compression compared to classical schemes (effect may be 
minimal, due to algorithm and block size chosen). 
The output data structure allows fast access to arbitrary sectors knowing position in input data and makes easy to 
implement highly parallel compression and decompression routines (features actually not exploited in PEA file format and 
implementation). 
Compressed data (from PCOMPRESS1..3) is organized as follows: 

• buffer size field, dword; declare the size of buffer of uncompressed data to compress at once; it’s needed to 
be declared a single time if multiple objects are compressed; 

• until end of input data: 
� size of the compressed buffer (dword); 
� compressed buffer (variable sized field); 

• uncompressed size of the last buffer 
Each buffer is in-memory compressed with zlib's compress, level 3, 6 and 9 for PCOMPRESS 1, 2 and 3 respectively, 
and decompressed with zlib's uncompress, uncompressed size is equal to buffer size for all blocks but the last (declared 
in the last field), size of the compressed buffer is declared before each block allowing to know how much data is needed 
to be read for decompression. 
If the compression result in expansion or no compression of the buffer, the compressed buffer is discarded and the 
uncompressed buffer is stored, the size of the compressed buffer will be set equal to the size of uncompressed buffer. 
In decompression, finding an input buffer sized as the expected uncompressed buffer result in treating it as non 
compressed, no decompression is done and data is simply copied to output. 
Expected uncompressed size is equal to buffer size for all blocks but the last, whose size can be calculated as residual 
uncompressed size (being the uncompressed size declared as file size in object header) or read from last field 
(uncompressed size of last buffer). 
That allow to: 
- spare CPU time when decompressing hard to compress files, since many buffers will simply need to be copied to the 

output, at the cost of simply verifying if declared compressed size = compression buffer size; 
- assure that each output buffer will be at most sized as input buffer; 
- for the aforementioned reason, the output will be expanded, in the worst case, by only the size needed for 

compression scheme’s fields, not regarding the underlying compression algorithm. 
The scheme would also make quite simple replacing the underlying compression strategy without changing the output 
data structure. 
 
 
 

Algorithms used in PEA format 
 
This is a quick description of algorithms allowed in PEA 1.0 file format definition; please refer to more specific publications 
for more detailed descriptions of the algorithm’s features and performances. 
Evaluations of relative algorithm’s speed are taken from [6] and [7]. 
Algorithms available for objects, volumes and streams: 
- Adler32: a very fast algorithm generating a 32 bit checksum, useful to detect casual data corruptions; it is internally 

called with ADLER32 string: this name is used for invoking that algorithm in command line or procedures (see 
“Usage” chapter). 

- CRC32: 32 bit checksum trough cyclic redundancy check, it’s slower than Adler and have different error detection 
characteristics, it’s useful to detect casual data corruptions; internal name: CRC32. 

- CRC64: 64 bit checksum trough cyclic redundancy check, slower than CRC32, useful to detect casual data 
corruptions; internal name: CRC64. 

- MD5: 128 bit hash, slower than forementioned checksums but faster than other featured hashes. It’s no longer 
considered cryptographically secure, however is still useful to detect casual data corruptions and, generating a longer 
tag than featured checksums, minimizes the probability to have two objects with same control tag, even in an huge 
archive; internal name: MD5. 

- SHA1: 160 bit hash whose strength is actually disputed, it’s slower than MD5; it’s however fit to recognize casual data 
corruption and may be fit in near future for detecting even malicious data tampering against low profile opponents; 
internal name: SHA1. 

- RIPEMD-160: 160 bit hash, similar in speed to SHA1, some concerns about his strength exist however it’s still well 
reputed; internal name: RIPEMD160. 

- SHA256: based on a newer SHA revision and generating a 256 bit tag, is still reputed secure up to detect malicious 
data tampering, it’s slower than SHA1; internal name SHA256. 

- SHA512: similar to SHA256 but generates a 512 bit tag, reputed secure up to detect malicious data tampering, it’s 
slower than SHA256; internal name SHA512. 

- Whirlpool: based on heavily modified AES algorithm, generate a 512 bit tag, slightly speedier than SHA512; actually 
reputed to be the strongest choice between available hash algorithms; internal name WHIRLPOOL. 
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Please note that being the tag transmitted within the communication (the archive), all of those algorithms are meant to 
protect data integrity against casual data corruption rather than against malicious attacks, since the attacker could 
generate a new valid message/digest pair. 
However, if the sender can publish the digests on a secure server the receiver can securely access, original tags can be 
verified, not allowing the aforementioned type of attack. Under those conditions choosing a cryptographically strong hash 
for generating the digest make unfeasible for the attacker to calculate a modification allowing the modified data to 
generate the same digest. 
Algorithms available for streams: 
- HMAC Authenticated Encryption using AES128 in CTR mode for the encryption: composition scheme providing the 

data in the stream is private and subject to authentication; internal name HMAC. 
- EAX Authenticated Encryption using AES128 in CTR and OMAC mode: a provably secure mode to provide privacy 

and authentication of the data relying on a single algorithm and a single key (in other word no longer two algorithms, 
but a single one, has to be proven secure to prove the mode is secure); internal name EAX. 

- EAX AE using AES256 in CTR and OMAC mode: similar to the previous mode, slightly slower, using 256 bit key size; 
128 bit sized keys are commonly regarded to be probably lifetime secure (or at least secure for some decades) 
against bruteforce under foreseeable technology advance, 256 bit sized keys makes bruteforcing 2^(256-128)= 2^128 
times harder making them probably secure forever against bruteforcing; internal name: EAX256. 

Each one of those 3 modes generates a 128 bit tag for authentication, 
Being the tag key dependent it’s possible to verify it only knowing the key, so an attacker will not be able, given the 
message, to recalculate the tag until the key remains secret.  
 
 
 

PEA security model 
 
PEA security model assumes the application to run on a trusted environment both during the archiving and unpacking 
stages, aiming to protect solely the data during a communication process: the protection apply when a PEA archive is 
sent to the receiver and end when the archive is opened by the receiver. 
PEA implementation cannot assure that the system is not subject to attacks that compromise the security of the data at a 
lower level allowing bypassing protection (encryption, authentication error checking) provided by the application, like i.e. 
keylogger logging the password provided by the user, or malware as viruses or rootkits exposing directly the clear data.  
The implementation doesn’t save temporary data, but cannot assure that the system will not cache data used by the 
application to the disk. 
Aim of PEA is offering a flexible security model given the three different levels for data control. 
Object level integrity checking is done on raw input data to detect errors with object level granularity; if for some 
improbable but not negligible cases (memory banks errors, bugs etc) errors are introduced with compression or 
encryption steps, object level control is able to detect that event for maximum security of operation. 
If encryption is used (at stream level), object level tags get encrypted, not allowing to cast guesses on object’s content 
independently from the object’s size. 
Stream level check offers up to authenticated encryption feature, protecting privacy and authenticity of a group of objects 
with same security needs, including tags generated by object level checks. That allow to don’t need a cryptographic 
header and authentication tag for each object transmitted (a sizeable space overhead) and to don’t need to finalize and 
restart encryption more times than needed, since it poses serious issues to collect enough entropy to seed each 
encryption and costs many CPU cycles especially in the Key Derivation and seed generation phase (see [1] analysing 
WinZip’s AE2 scheme, that is object oriented). 
Volume level integrity check are communication oriented and allow to discard single corrupted volumes in order to 
minimize, in case of error, the overhead of resending or re-downloading the data. Volume level integrity check is 
performed on the data in its final form, encrypted and compressed if those features are used, that means that volume 
tags, independently form volume size, cannot be used to cast guesses on volume’s plaintext content if encryption (at 
stream level) is used. 
Moreover, if compression is used, the structure of the data subject to volume level check is rather different from the one 
subject to object level check, allowing a redundant error detection on two rather different data structures. 
That mean that each of the two levels may identify kinds of errors that pass undetected in the other level, due to the 
different structure of the data checked, even using the same algorithm for objects and volumes; of course, chosing 
different algorithms may increasing furtherly the ability of error detection of the system. 
 
Examples of use: 
 
Alice and Bob need to exchange data as fast as possible on a wide, secure and not error-prone channel. 
In those ideal condition all checking and compression features could be turned off with process speed similar to copying 
files from one location to another, resulting in consolidating the n input in m output volumes to fit the destination space 
constrains (i.e. destination is a removable archive, or destination filesystem support limited file size). 
 
Alice and Bob need to exchange non-private data and want to be able to know if the transmission was corrupted or 
tampered, in which case they want simply to discard the data and repeat the communication. 
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All those conditions can be accomplished with the sole stream level control, all data transmitted is checked and in case of 
error anywere the check will fail to match. 
 
Alice and Bob need to exchange private data at the aforementioned conditions. 
It can be accomplished using authenticated encryption all data (as input data and all associated content) is kept private 
and checked with cryptographically strong authentication to guarantee is neither corrupted nor tampered and that it 
comes from the sender that decided the given password. 
Multi stream archives (PEA 2.0 file format only, actually not implemented) may allow different input object group to be 
subject of different kind of stream level control, allowing i.e. using different password or different algorithms for different 
streams. 
 
Of course, with this security model a single corrupted byte can result in needing to repeat the whole communication (or 
the whole stream), such model should not be used when transmitting data on channels prone to data corruption or a 
severe overhead for retransmitting the data will be imposed, proportional to the stream size and to the probability of data 
corruption. 
An efficient countermeasure will be in using volume control check: in this case a corruption event will impose the need of 
resending only the interested volume(s) rather than the whole communication; decreasing the size of the volumes will 
make the event of corruption of a volume less costly. 
In example Alice may publish on a ftp server m volumes, when Bob’s download of a volume gets corrupted he need only 
to re-download the given volume rather than all the volumes; Alice can chose a volume size and nature of the checking 
algorithm fit to efficiently deal with corruption probability. 
 
A severe communication problem or media failure result in the corruption most or all volumes, moreover Bob may not 
have the possibility to request Alice to resend the data and need to try to extract all single objects that result not 
corrupted. 
In this critical case object level check can help Bob to recover non corrupted objects from Alice transmission, since each 
embedded object has its own control tag. 
However see “Data Recovery” chapter below that analyse in details the practical issues in recovering data from a 
corrupted PEA archive (if it’s not possible to resend it), since data corruption may be relevant in preventing the possibility 
for a program to extract data at all from an archive, altering the fields structure needed to automate the data extraction. 
 
Examples of use against attackers, using stream lev el AE: 
 
The eavesdropper Eve try to get useful information from object level tags 
Object level tags are not accessible in clear, so no information can be recovered without decrypting the archive. 
 
The eavesdropper Eve try to get useful information from volume level tags 
Volume level tags are in clear, but are calculated on data in encrypted form, so no information is leaked about plaintext. 
 
The malicious active attacker Mallory try to modify the archive’s or stream’s header area to see what happens if the 
decryption program runs with unproper parameters (control algorithms, compression scheme etc) or to mount a DOS 
attack on Bob. 
All data in headers area, except salt and key verifier, are appended to the password and run, along with the salt, in the 
key derivation function; decryption is then tested with key verifier. 
That makes cryptographically hard, if the key derivation function is secure (PEA uses PBKDF2, widely accepted to be 
secure), to find a combination of salt and password (that includes the header’s data) that matches the key verification 
value.  
Since key verifier is word sized, that means that a modification in archive’s or stream header (including salt and key 
verifier, since used in a secure way in the verification procedure above described) has 1 /2^16 probability to pass 
undetected to this stage.  
Moreover, only few header are possible since non valid header will make the archive to don’t even be opened. 
Since only one message out 2^16 will run the full decryption and authentication process, this attack has a low impact on 
Bob, that has two means (header validity check and key scheduling level check, the latter being cryptographically strong) 
to discard most of the wrong headers without spending the full decryption time. 
 
Mallory can decide to mount a DOS attack tampering with all the communication he can intercept imposing Alice and Bob 
a severe overhead for repeating several communications. 
Case1: private communication 
Mallory could alter a volume and then substitute the volume tag with a matching one: the tampering will be reported at 
stream level since the altered data will not allow stream’s authentication, but it will not be possible to identify the volume 
needed to be retransmitted. 
However, if object level integrity check is used, that action will modify one of the embedded objects or related object level 
control tags (both protected by encryption), making them no longer match. The fact will be reported as an object level 
error, allowing a) to identifying tampered content b) to probably narrowing the field of possible tampered volume(s). 
To avoid the detection of a tampered object Mallory should know all the content of the object and its exact position in the 
archive in order to be able to calculate the original control tag and the tampered one and to alter in the proper way (i.e. by 
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difference with original values, if CTR mode encryption is used, since bit position of plaintext is not altered) the object 
data and related object’s control tag areas. 
This level of knowledge is unlikely, since object names and all related metadata, including size and control tag, are 
encrypted, but not impossible, since Mallory could by hypothesis have complete knowledge of all the objects need to 
calculate were exactly the desired object reside in the archive; this make the event non trivial but not non feasible. 
If Mallory succeed in hiding both volume’s and object’s tampering, archive will however fail the authentication but it will 
not be possible to reduce the field of data to be discarded, and the DOS attack would have been successful. 
The only cryptographically strong fix for this case of DOS attack is in providing authenticated encryption features for the 
volume level, that is actually not implemented. 
Mallory could even switch the order of the volumes in the archive, since volume sequence is declared in clear (in the 
volume’s name), however this will lead to fail the stream’s authentication. 
Probably the integrity checking of objects partially embedded in the volume (i.e. at the beginning and at the end), will fail, 
but as shown before Mallory could have enough knowledge of the objects to fix the problem of object level checks. 
In both case the attacks doesn’t reduce the security of the encryption nor of the authentication of the stream, but may 
impose to Bob the overhead to discard the whole transmission. 
Case 2: publication 
Issues in Case 1 becomes not meaningful when the data get published and hash values are i.e. exposed for control on a 
public server; if Bob can access the server securely (out of the scope for PEA security model), the hash value can verified 
and Mallory cannot rely on creating a new valid modified message / hash pair; the only possible attack remaining is 
finding a collision (modified message that generate the original hash), that is unfeasible if a cryptographically strong hash 
was chosen. 
The volume sequence swapping attack becomes unfeasible too, unless two volumes have the same hash value, however 
the attacked archive will still fail at least the stream level authentication. 
 
 
 

Cryptanalysis of PEA format 
 
This chapter was written mainly applying to PEA file format the observations made by Tadayoshi Kono [1] on WinZip 
Authenticated Encryption scheme, so please note that it may be far than exhaustive since the cited study is actually 
focused on zip format, not on PEA format. 
Basically, the difference between zip’s AE-2 encryption scheme and PEA’s one are: 

- PEA features uses EAX mode along with classic composition method; EAX mode security for both privacy and 
authentication was clearly proved (providing the underlying cipher is secure) in [2]; 

- PEA encrypt a group of objects (and authenticate them and the salt that was used) as a single encrypted stream 
so it’s not needed to encrypt each file separately; moreover PEA 1.0 file format doesn’t even allow to make 
archives with multiple streams: those factors makes infeasible the attacks described in [1] in chapter 7, 8 and 9: 

o 7: archives with mixed content of encrypted and unencrypted files - such case is not possible with PEA 
1.0 file format since only one stream is possible; 

o 8: insufficient entropy in salt that may lead to keystream reuse; and 9: concerns in making easier 
dictionary attacks - becomes infeasible since salt is generated a single time, see below for implemented 
entropy sampling scheme in current PEA executable implementation; 

That also leads to: 
- having the encryption initialised only once means offering higher performances when encrypting many small 
files and allowing choosing slower key derivation and salt generation functions, if desired, with generally smaller 
impact on overall performances. 
- don’t have the overhead of the salt and the authentication tag for each single object archived, resulting in a 
smaller output size overhead for cryptography related data.  

- PEA encrypt all associated data of each input object (name size, name, last modification date, attributes, size and 
optional checksum/hash of uncompressed, unencrypted object), not only file content, making infeasible attacks 
described chapters 3 (leakage of data) and 5 (exploiting filenames associations) 

- Attack described in chapter 4 changing compression scheme and output size to produce garbage, but 
unencrypted, output:  
being the headers data appended to the user-provided passphrase and sent to key derivation function, only 1 
/2^16 modification will pass the key verification stage, and even in this case the modification will make the 
authentication fail (unless finding a collision in the 2^128 authentication tag field); 
moreover objects sizes are encrypted and authenticated, trying to modify them will result in stream failing the 
authentication;  
it’s possible to make this kind of attack even more unfeasible using object level integrity check, being the check 
tag subject to authenticated encryption: 

o if the attacker try to modify the object level control tag to match with the new expected output, the stream 
will not authenticate and the user will be warned to don’t trust it; 

o if the attacker doesn’t try to modify the tag, the object level check will report the error (unless the attacker 
can find valid PEA header settings producing a collision for the object level check algorithm and the given 
object, that’s quite unfeasible); 
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it would be however a nice security policy to delete by default objects failing the authentication/integrity check in 
order to prevent the user to be tricked by the attacker to misuse them. 

 
Other important details about operations for generating a .pea archive, as featured in current PEA implementation: 

- PBKDF2 key derivation is used for keying; SHA1 160 bit hash is used as primitive function in the kdf for 
generating keys for 128 bit encryption, while Whirlpool 512 bit hash is used as primitive in kdf for generate keys 
for 256 bit encryption. 

- Optional two factor authentication is offered: a passphrase (may contain any typeable character) is mandatory, a 
keyfile can be optionally used: any filetype can be specified, although it’s strongly recommendable to use random 
generated files. 
Passphrase, archive header and the content of the keyfile are concatenated and sent as an array of byte to the 
PBKDF2 key derivation function. 

 
Random number generation in current PEA implementation was developed trying to take in account basic concepts 
contained in literature, as in [8]. 
Please refer to pea_utils unit, in the section “functions related to keying, salting and entropy collection” for more details; in 
brief: 

- The random number generator, from 0.11 release, uses a 2048 bit sized (256 byte) persistent randomness 
collector to propagate randomness collected to following sessions of use; Pea and Peach save that session seed 
as “rnd” file in “res” path. 

- A “fingerprint” of the system is taken at program start, from several system- and session-specific variables, some 
changing slowly some others changing quickly, in example: environment variables; current disk size and free 
space; system timers and CPU cycle counter; memory status; PID; last OS error; list of temporary file names, 
attributes, file dates/times; etc… values are collected and hashed, with the fingerprint being the digest of the hash 
of the system’s entropy pool. 

- Three user dependent entropy sources can be initialised: 
o Mouse: at each mouse movement coordinates and timing (and memory status for Windows only) are 

used to update mouse’s entropy pool; 
o Keyboard: each time a key is pressed the key and the timing (and memory status for Windows only) are 

used to update keyboard’s entropy pool; 
o Files: when a file is opened for collection entropy purpose, content, name, timing (and memory status for 

Windows only) etc are used to update file’s entropy pool; 
The entropy pool update process is updating the hash status with newer sampled values. 

- When the generation of a random number (key, salt…) is requested, the three user dependent pools are finalized 
(the digest of each hash is calculated); and other two digests are created: 

o a time digest (digest of hashing of timing and CPU cycle counter; 
o a memory status digest (Windows only) generated when the random number generation is requested; 

The random number generation function usually passes the values of those 6 digests (fingerprint, mouse, keyboard, files, 
time and memory) and the data from the persistent randomness pool trough an hash and/or to seed cryptographic prng 
and csprng functions. 
 
 
 

Data recovery from PEA format 
 
Information in this chapter doesn’t mean to matter for common usage of the program, becomes relevant only when rather 
uncommon errors or willing tampering of the data occurs. 
A true data recovery mechanism with Error Correcting Code fields (i.e. like, optionally, in RAR format) is not integrated in 
current PEA archiver implementation, however PEA file format allow to specify an archive-specific and a stream-specific 
error correction scheme for future usage. 
It’s however possible to use PEA executable in cascade with other applications that generates ECC fields, in order to 
overcome this limit when data integrity is crucial, i.e. if a single copy of the archive exist and it’s not possible to download 
it again or recover it from a backup. 
On the other side, error and tampering detection is strong and can be flexibly adapted to the user’s model of treat about 
data corruption or forgery, making extremely difficult that a casual or intentional modification get unnoticed. 
As tradeoff of PEA approach it’s generally not possible to partially extract and authenticate a single object from a stream 
since it is the whole stream the subject of authentication and all the data embedded in the stream need to be correct to 
obtain a positive authentication. 
Volume level integrity check can help to find in which volume the problem is, otherwise object level check can allow 
extraction of data with object level granularity, discriminating successfully and unsuccessfully object-level integrity 
checked objects if it’s acceptable for the user’s treat model. 
From the point of view of the implementation of the extraction program (UnPEA), it’s critical also to understand how errors 
may impact with program operations: 
- If encryption is used, errors in archive or stream header, in encryption salt or in the key validation field will bring to 

unsuccessful key validation, stopping the extraction from the encrypted archive. Generally this problem cannot be 
fixed, unless the user made a backup of the headers area, including cryptographic subheader (first 36 byte of the file); 
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- If encryption is not used errors in functional fields in the archive or stream header (fields defining archive’s and 
stream’s properties) can be detected only at stream check stage; driving UnPEA to use wrong settings in extracting 
the archive, they may prevent the application to work properly, not allowing to complete the extraction and the check 
of the content. The backup of the header material can fix that kind of errors, otherwise the header functional fields 
may even be rewritten manually using an hex editor and looking for reference the documentation or sourcecode to 
find values to write in each field. 

- Errors in the file data generally allow total archive extraction (allowing further examination of the data), unless some 
bits are lost or added and file size is altered, making not possible to automatically find where the next file begin and 
so triggering errors of different kinds; 

- Errors in file age and file attributes are not meaningful if UnPEA application is told to reset those attributes, otherwise 
incorrect date or attributes could be not accepted by the host system that may not allow to save the object; 

- Errors in the declaration of the width of a variable sized field (file name size, file size, size of compressed and 
uncompressed block when PCOMPRESS1..3 compression is used), generally make not possible to find were next 
fields begin not allowing the automatic extraction process to continue, however if the data is not encrypted, or when 
encryption is removed, objects could be extracted using an hex editor since the object names are human readable 
and may help to find the desired data in the archive. 
Current implementation consider wrong input names longer than 32K characters (exceeding actual needs), warning 
the user and stopping; that mean that an error in input name size (word sized field) has ½ probability to pass 
undetected to this check, for each object in the archive. 
If PCOMPRESS1..3 compression is used, each block of compressed data is preceded by it’s compressed size (4 
byte field, allowing values up to 2^32-1 byte); since for PCOMPRESS* scheme output (compressed) blocks of data 
can have mandatory at most the same size of input (uncompressed) blocks of data, it’s easy to check against most 
errors in those areas: if compressed size is declared bigger than the buffer size (in the current implementation 1 MB), 
it’s certainly an error (so for the current implementation a random error in those fields has about 1/4000 probability to 
pass undetected). 
Moreover, the last field of a PCOMPRESS1..3 compressed files declare the uncompressed size of the last buffer 
(since it probably don’t match the compression buffer’s size), which is checked against the size of residual data 
expected due to the size declared for that file; if they differs a decompression error condition is raised and operation 
is interrupted. 

Current UnPEA implementation will try to intercept error conditions and in case of unexpected types of errors will try to 
save an automated job report to allow further analysis. 
Error checking volumes before extraction may be a way to avoid operational problems triggered by data errors to the 
extraction procedure; however this approach has two shortcomings: 
- doing so will require the extraction procedure to run not synchronously all operations (anticipating the volume level 
checks), which leads to performance drawbacks; 
- volume integrity check is meant to detect casual data corruption, if the volume was forged the volume tag may have 
been recalculated and replaced, making useless this approach (that issue doesn’t apply if volume’s hashes are published 
and safely accessible from the receiver) 
 
 
 
 
 

 


