
The DVI Driver Standard, Level 0

The TUG DVI Driver Standards Committee

Abstract

The TUG DVI Driver Standard defines functional
and interface requirements for computer programs
(DVI processors) that read and translate files in the
DVI page description language. This document is
the subset of the DVI standard (level 0) applying to
minimally functional DVI processors. The specifica-
tions here should be considered a minimum require-
ment; developers are encouraged to write drivers ex-
ceeding these specifications.

(The version of the Level 0 Standard presented
here is draft 0.05. It has been reviewed by the TUG
DVI Driver Standards Committee and is now being
presented to the TUG membership at large for re-
view.)

The complete standard will be presented as a se-
ries of “tiers” requiring increasingly stringent con-
trol over the output of DVI processors.

1 Purpose of the level-0 standard

The level-0 standard (henceforth called standard)
is meant to be a base standard to which all DVI-
processing programs must adhere. It provides a base
level of support for both DVI-to-output-device trans-
lators (so called drivers) and DVI-to-DVI preproces-
sors (e.g., dviselect). The standard hereafter calls
such DVI-processing programs “DVI processors” or
just “processors.” This standard allows all reason-
able documents to be rendered (i.e., printed or dis-
played) accurately. When we refer to accurate ren-
dering, we mean that the when the data generated
by the DVI processor(s) are transmitted to a output
device the latter shall produce a page accurately de-
picting the page described by the DVI file (disregard-
ing resolution effects and output technology).

The basis for many of the specifications in this
standard is the possible output of TEX82 although
some requirements are based on assumptions that
cannot occur with TEX82-based output; functions
which can be implemented via a pre-processor are
generally omitted (e.g., page selection and sorting).

2 The DVI file

As a rule, DVI processors must be able to read
and interpret any valid DVI file as specified in ap-
pendix A. They shall also correctly render any DVI
file which falls within the following limits. If these
requirements cannot be met due to limitations of the
computer or the output device they shall be fulfilled
as completely as possible and the limitations docu-

mented. Aside from this exception, these specifica-
tions are a minimum; good processors will probably
be able to handle DVI files exceeding these limits
(DVI files which exceed the limits are likely to be
rare, but might still occur).
Explanation: This exception above is necessary be-
cause certain popular output devices have varying ca-
pacity depending on the amount of on-board memory or
similar conditions. For example, an HP LaserJet Plus
with 512KB of memory is capable of holding in memory
only 3056 distinct downloaded characters; a full page
bitmap is also not possible with this configuration.

2.1 DVI commands

The DVI processor must be able to interpret every
DVI command listed in Appendix A.
Explanation: Some commands, e.g., put4 , are gener-
ally used for conditions outside those enumerated below;
despite this, DVI-translating programs are expected to
accurately interpret these commands and execute them
if they do specify an action within the specified minimum
limits.

2.2 Characters

2.2.1 Number of characters in a font

The DVI processor must be able to handle fonts
which have characters at any code in the range
0 ≤ c < 256.
Explanation: Some printers with download possibil-
ities will require fonts with more than a given number
of characters to be broken into two or more device fonts
when downloaded to the printer. Please note that this
requirement is not subject to the exception for device
limitations of section 2.

2.2.2 Character size

The DVI processor must be able to render any char-
acter up to a size of 600 pt (horizontal) by 800 pt
(vertical) unless this is not possible due to device
constraints as outlined in section 2.
Explanation: This size is the glyph size, not the size
given in the TFM files. These two sizes are not connected;
especially it’s important that the glyph might be outside
the bounding box given by the dimensions of the TFM

files.

2.2.3 Number of characters per page

The DVI processor must be able to render a page
containing as many as 20 000 characters unless this
is not possible due to device constraints as outlined
in section 2.

2.2.4 Unusual characters

The DVI processor must correctly render (a) charac-
ters with empty bitmaps (e.g., the SliTEX fonts) in-
cluding characters whose horizontal escapement is 0,
(b) characters whose printable image is wider than
its horizontal escapement, and (c) characters with a
negative horizontal escapement.

2.3 Rules

2.3.1 Rule size

The DVI processor must be able to render rules of
any size up to 600 pt (horizontal) by 800 pt (vertical)
unless this is not possible due to device constraints
as outlined in section 2.

2.3.2 Placement of rules on the page

The lower left corner of a rule is to be placed on the
page at the location given by rounding the current
DVI coordinates as indicated in section 2.6.2. The
height and width of the rule is given by the formula
dKne where n is the dimension in DVI units and K is
a constant which converts from DVI units to device
units.1

Explanation: It’s important to remember that no rule
is rendered if n ≤ 0, as specified in appendix A.

2.4 Number of rules per page

The DVI processor must be able to render a page
containing as many as 1000 rules unless this is not
possible due to device constraints as outlined in sec-
tion 2.

2.5 Stack

The DVI processor must be able to handle DVI files
whose push/pop stack is up to 100 levels deep.

2.6 Positioning on the page

2.6.1 Location of the origin

The point (0, 0) in DVI coordinates is to be located
at a point one inch (25.4 mm) from the top of the
page and one inch (25.4 mm) from the left side of
the page.
Explanation: While the default margin given in this
circumstance is somewhat inconvenient for users of non-
U.S.-sized paper, the advantage of having a universally
standard default location of (0, 0) and the widespread
assumption of the given default margin in most macro
packages outweighs the inconveniences. For some DVI

processors (e.g., screen previewers), this specification
refers to a virtual page and not the physical output.

1 Devices with aspect ratios unequal to one will
need to maintain separate constants for vertical and
horizontal dimensions.

2.6.2 Changes in position due to
characters and rules

The definition of DVI files refers to six registers,
(h, v, w, x, y, z), which hold integer values in DVI
units. In practice, we also need registers hh and
vv , the pixel analogs of h and v, since it is not
always true that hh = pixel round(h) or vv =
pixel round(v) where pixel round(n) is defined as
sign(Kn) · babs(Kn) + 0.5c with sign(i) resulting
in −1 if i < 0 and in 1 otherwise.

Whenever the DVI processor encounters an in-
struction that changes the current position, it up-
dates h and v using pure DVI units. If the change in
position is due to a command which sets a character,
the processor adds the horizontal escapement value
from the PK or GF file to hh to get the new value for
hh.

For a horizontal movement of x DVI units from any
other command, hh will be set to hh+pixel round(x)
if x < word space for a horizontal movement to
the right or if x > −back space for a horizon-
tal movement to the left. word space is defined
as space − space shrink , and back space is defined
as 0 .9quad if the processors uses TFM files. If the
processors does not use TFM files the design size of
the current font in the DVI file (after all necessary
magnifications have been applied) may be used for
a quad, and word space may be approximated by
0 .2quad . If x exceeds the bounds outlined above, hh
is set to be pixel round(h+x). In this way, rounding
errors are absorbed by interword spaces.

For a vertical movement of y DVI units, vv
is set similarly except that vv is set to vv +
pixel round(y) if −0.8quad < y < 0.8quad and set
to pixel round(v + y) otherwise. This allows verti-
cal rounding errors to be absorbed in the interline
spacing while still allowing fractions and super- and
subscripts to be printed consistently.

After any horizontal movement, a final check is
made as to whether dist > max drift with dist de-
fined as abs(hh − pixel round(Kh)). If it is, then
hh is set to pixel round(Kh)+sign(dist) ·max drift .
A similar check is made with vv and v. max drift
should be set to 2 for output devices with device
units smaller than or equal to 0.005 in (0.127 mm),
1 for output devices with device units greater than
0.005 in (0.127 mm) but less than or equal to 0.01 in
(0.254mm) and 0 for output devices with device
units greater than 0.01 in (0.254 mm).
Explanation: This method for tracking the positions
is oriented towards the typesetting of text. It does not
fix positioning problems with lines consisting completely
of characters of a fixed-width font, where one line con-
sists only of characters without any movements and the

next line contains movements. Other problematic ar-
eas are the creation of line graphics with fonts with line
segments. These line segments may not align.

2.6.3 Range of movement

The DVI processor should be able to handle move-
ments in the DVI file up to a total of 231 − 1 DVI
units in any direction from the origin.

2.6.4 Objects off the page

Any printable object which would lie entirely off
the physical page should not be rendered but any
changes to positioning should still be taken into
consideration. Any printable object which would
lie partially off the physical page should either be
clipped so that portion of the object that lies off the
page is not printed or omitted entirely, unless this
is not possible due to device constraints as outlined
in section 2.
Explanation: Because some output devices do unpre-
dictable things when objects are rendered partially or
completely off the edge of the page, it is up to the DVI

processor writer to make sure that objects printed par-
tially off the page are handled correctly.

2.7 Fonts

2.7.1 Font numbers

The DVI processor must be able to accept font num-
bers (the parameter k given by a fnt def command)
in the range 0 ≤ k < 256.

2.7.2 Distinct fonts

The DVI processor must be able to handle any doc-
ument containing 64 or fewer distinct fonts.

2.8 Specials

Specials are the parameters to the DVI commands
xxx1 , xxx2 , xxx3 , and xxx4 . This standard does
not define the meaning of any special, future tiers
may. Specials not officially defined by the DVI pro-
cessor standards committee should be flagged with a
warning when read from the DVI file. If any specials
are encountered that are ignored by the processor,
the processor must issue a warning message. These
warning messages may optionally be turned off at
run time.

3 Configuration

It must be possible for the installer of a DVI proces-
sor to configure such things as the location and nam-
ing scheme of fonts, default paper size, etc. without
having to recompile or relink the processor.

Explanation: “etc.” means “make as many things
configurable as possible.” This should be more detailled
(Hint due to Karl Berry).

4 Font files

4.1 Font formats

The DVI processor must be able to read PK fonts with
the location specifiable at run time. The PK format
is given in appendix C. GF support is optional. The
GF format is given in appendix B.
Explanation: The PK format is the preferred format
for bitmap fonts because (a) it is the most compact for-
mat in the TEX world and (b) included in the PK format
are pieces of information about the font (e.g., the hor-
izontal escapement in pixels for each character) which
are essential for fulfilling the typesetting requirements
of section 2.6.2.

4.2 The scaling number

The magnification and resolution of a font are com-
bined into a scaling number in one of two ways:

Resolution number The resolution number is
given by resolution ×magnification where both
values are as above. This is the preferred spec-
ification for GF and PK files.

Magnification number The magnification num-
ber is given by 5 × resolution × magnification
where the resolution is given in dots per inch
(on devices with a aspect ratio unequal to one,
the horizontal resolution should be used) and a
magnification of 1 indicates normal sizing.

4.3 Magnifications

4.3.1 Minimum set of magnifications

The DVI processor must be able to use at least
fonts at the following magnifications of its tar-
get resolution: 1.0 (magstep0), 1.095 (magstep0.5),
1.2 (magstep1), 1.44 (magstep2), 1.728 (magstep3),
2.074 (magstep4), 2.488 (magstep5), 2.986
(magstep6), 3.583 (magstep7), 4.300 (magstep8),
and 5.160 (magstep9).
Explanation: The term magstepn stems from the
TEX and METAFONT control sequence with the same
name. It’s meaning is 1.2n.

This list should not be taken as an exhaustive list. DVI
processor authors are encouraged to support all possible
magnifications.

4.3.2 Margin of error

If a DVI file requests a font at a size that does not
exist, but the requested size is within 0.2 % of a sup-
ported magnification with the font at that size ex-
isting, the DVI processor must use the latter font
without warning.

Explanation: TEX and METAFONT compute font
magnifications with different precisions. Further, calcu-
lations done by TEX and/or a DVI processor are subject
to roundoff errors. The margin prescribed is sufficient for
accomodating most of these errors. It is not intended to
compensate for fonts requested at an incorrect size.

4.4 Missing fonts

If a font is missing the DVI processor must continue
processing and, after issuing an appropriate warning
message, deal with the missing font in one of three
ways:

1. Insert appropriate white space where characters
of the font would appear.

2. Insert black rectangles of the size of the char-
acter given in the TFM file for the font.

3. Print the characters from that font at a different
size or from another font at the same size.

If methods 1 or 2 are used and the processor is un-
able to locate size information for the font in ques-
tion, then the processor may simply ignore any char-
acter setting command that occur while the current
font is that font.

Under no circumstances should a missing font
cause a fatal error.

A Device-Independent File Format

A.1 Introduction

The form of DVI files was designed by David R. Fuchs
in 1979. Almost any reasonable typesetting device can
be driven by a program that takes DVI files as input, and
a lot of such DVI-to-whatever programs have been writ-
ten. Thus, it is possible to print the output of document
compilers like TEX on many different kinds of equipment.

A DVI file is a stream of 8-bit bytes, which may be
regarded as a series of commands in a machine-like lan-
guage. The first byte of each command is the operation
code, and this code is followed by zero or more bytes
that provide parameters to the command. The parame-
ters themselves may consist of several consecutive bytes;
for example, the ‘set rule ’ command has two parameters,
each of which is four bytes long. Parameters are usually
regarded as nonnegative integers; but four-byte-long pa-
rameters, and shorter parameters that denote distances,
can be either positive or negative. Such parameters are
given in two’s complement notation. For example, a two-
byte-long distance parameter has a value between −215

and 215 − 1.
A DVI file consists of a “preamble,” followed by a se-

quence of one or more “pages,” followed by a “postam-
ble.” The preamble is simply a pre command, with its
parameters that define the dimensions used in the file;
this must come first. Each “page” consists of a bop com-
mand, followed by any number of other commands that

tell where characters are to be placed on a physical page,
followed by an eop command. The pages appear in the
order that they were generated, not in any particular nu-
merical order. If we ignore nop commands and fnt def
commands (which are allowed between any two com-
mands in the file), each eop command is immediately
followed by a bop command, or by a post command; in
the latter case, there are no more pages in the file, and
the remaining bytes form the postamble. Further details
about the postamble will be explained later.

Some parameters in DVI commands are “pointers.”
These are four-byte quantities that give the location
number of some other byte in the file; the first byte is
number 0, then comes number 1, and so on. For exam-
ple, one of the parameters of a bop command points to
the previous bop ; this makes it feasible to read the pages
in backwards order, in case the results are being directed
to a device that stacks its output face up. Suppose the
preamble of a DVI file occupies bytes 0 to 99. Now if
the first page occupies bytes 100 to 999, say, and if the
second page occupies bytes 1000 to 1999, then the bop
that starts in byte 1000 points to 100 and the bop that
starts in byte 2000 points to 1000. (The very first bop ,
i.e., the one that starts in byte 100, has a pointer of −1.)

The DVI format is intended to be both compact
and easily interpreted by a machine. Compactness is
achieved by making most of the information implicit in-
stead of explicit. When a DVI-reading program reads the
commands for a page, it keeps track of several quanti-
ties: (a) The current font f is an integer; this value is
changed only by fnt and fnt num commands. (b) The
current position on the page is given by two numbers
called the horizontal and vertical coordinates, h and v.
Both coordinates are zero at the upper left corner of
the page; moving to the right corresponds to increas-
ing the horizontal coordinate, and moving down corre-
sponds to increasing the vertical coordinate. Thus, the
coordinates are essentially Cartesian, except that verti-
cal directions are flipped; the Cartesian version of (h, v)
would be (h,−v). (c) The current spacing amounts are
given by four numbers w, x, y, and z, where w and x
are used for horizontal spacing and where y and z are
used for vertical spacing. (d) There is a stack containing
(h, v, w, x, y, z) values; the DVI commands push and pop
are used to change the current level of operation. Note
that the current font f is not pushed and popped; the
stack contains only information about positioning.

The values of h, v, w, x, y, and z are signed inte-
gers having up to 32 bits, including the sign. Since they
represent physical distances, there is a small unit of mea-
surement such that increasing h by 1 means moving a
certain tiny distance to the right. The actual unit of
measurement is variable, as explained below.

A.2 Summary of DVI commands

Here is a list of all the commands that may appear in
a DVI file. Each command is specified by its symbolic
name (e.g., bop), its opcode byte (e.g., 139), and its

parameters (if any). The parameters are followed by a
bracketed number telling how many bytes they occupy;
for example, ‘p[4]’ means that parameter p is four bytes
long.

set char 0 0
Typeset character number 0 from font f such that
the reference point of the character is at (h, v).
Then increase h by the width of that character.
Note that a character may have zero or negative
width, so one cannot be sure that h will advance
after this command; but h usually does increase.

set char 1 through set char 127 (opcodes 1 to 127)
Do the operations of set char 0 ; but use the char-
acter whose number matches the opcode, instead of
character 0.

set1 128 c[1]
Same as set char 0 , except that character number c
is typeset. TEX82 uses this command for characters
in the range 128 ≤ c < 256.

set2 129 c[2]
Same as set1 , except that c is two bytes long, so it is
in the range 0 ≤ c < 65536. TEX82 never uses this
command, which is intended for processors that deal
with oriental languages; but a DVI processor should
allow character codes greater than 255. The proces-
sor may then assume that these characters have the
same width as the character whose respective codes
are c mod 256.

set3 130 c[3]
Same as set1 , except that c is three bytes long, so
it can be as large as 224 − 1.

set4 131 c[+4]
Same as set1 , except that c is four bytes long, pos-
sibly even negative. Imagine that.

set rule 132 a[+4] b[+4]
Typeset a solid black rectangle of height a and
width b, with its bottom left corner at (h, v). Then
set h ← h + b. If either a ≤ 0 or b ≤ 0, nothing
should be typeset. Note that if b < 0, the value
of h will decrease even though nothing else hap-
pens. Programs that typeset from DVI files should
be careful to make the rules line up carefully with
digitized characters, as explained in connection with
the rule pixels subroutine below.

put1 133 c[1]
Typeset character number c from font f such that
the reference point of the character is at (h, v). (The
‘put’ commands are exactly like the ‘set’ commands,
except that they simply put out a character or a rule
without moving the reference point afterwards.)

put2 134 c[2]
Same as set2 , except that h is not changed.

put3 135 c[3]
Same as set3 , except that h is not changed.

put4 136 c[+4]
Same as set4 , except that h is not changed.

put rule 137 a[+4] b[+4]
Same as set rule , except that h is not changed.

nop 138
No operation, do nothing. Any number of nop ’s
may occur between DVI commands, but a nop can-
not be inserted between a command and its param-
eters or between two parameters.

bop 139 c0[+4] c1[+4] . . . c9[+4] p[+4]
Beginning of a page: Set (h, v, w, x, y, z) ←
(0, 0, 0, 0, 0, 0) and set the stack empty. Set the
current font f to an undefined value. The ten ci

parameters can be used to identify pages, if a user
wants to print only part of a DVI file; TEX82 gives
them the values of \count0 . . . \count9 at the time
\shipout was invoked for this page. The parameter
p points to the previous bop command in the file,
where the first bop has p = −1.

eop 140
End of page: Print what you have read since the
previous bop . At this point the stack should be
empty.

push 141
Push the current values of (h, v, w, x, y, z) onto the
top of the stack; do not change any of these values.
Note that f is not pushed.

pop 142
Pop the top six values off of the stack and assign
them to (h, v, w, x, y, z). The number of pops should
never exceed the number of pushes, since it would
be highly embarrassing if the stack were empty at
the time of a pop command.

right1 143 b[+1]
Set h ← h + b, i.e., move right b units. The pa-
rameter is a signed number in two’s complement
notation, −128 ≤ b < 128; if b < 0, the reference
point actually moves left.

right2 144 b[+2]
Same as right1 , except that b is a two-byte quantity
in the range −32768 ≤ b < 32768.

right3 145 b[+3]
Same as right1 , except that b is a three-byte quan-
tity in the range −223 ≤ b < 223.

right4 146 b[+4]
Same as right1 , except that b is a four-byte quantity
in the range −231 ≤ b < 231.

w0 147
Set h ← h + w; i.e., move right w units. With
luck, this parameterless command will usually suf-
fice, because the same kind of motion will occur
several times in succession; the following commands
explain how w gets particular values.

w1 148 b[+1]
Set w ← b and h ← h+ b. The value of b is a signed
quantity in two’s complement notation, −128 ≤ b <
128. This command changes the current w spacing
and moves right by b.

w2 149 b[+2]
Same as w1 , but b is a two-byte-long parameter,
−32768 ≤ b < 32768.

w3 150 b[+3]
Same as w1 , but b is a three-byte-long parameter,
−223 ≤ b < 223.

w4 151 b[+4]
Same as w1 , but b is a four-byte-long parameter,
−231 ≤ b < 231.

x0 152
Set h ← h + x; i.e., move right x units. The ‘x’
commands are like the ‘w’ commands except that
they involve x instead of w.

x1 153 b[+1]
Set x ← b and h ← h+ b. The value of b is a signed
quantity in two’s complement notation, −128 ≤ b <
128. This command changes the current x spacing
and moves right by b.

x2 154 b[+2]
Same as x1 , but b is a two-byte-long parameter,
−32768 ≤ b < 32768.

x3 155 b[+3]
Same as x1 , but b is a three-byte-long parameter,
−223 ≤ b < 223.

x4 156 b[+4]
Same as x1 , but b is a four-byte-long parameter,
−231 ≤ b < 231.

down1 157 a[+1]
Set v ← v + a, i.e., move down a units. The pa-
rameter is a signed number in two’s complement
notation, −128 ≤ a < 128; if a < 0, the reference
point actually moves up.

down2 158 a[+2]
Same as down1 , except that a is a two-byte quantity
in the range −32768 ≤ a < 32768.

down3 159 a[+3]
Same as down1 , except that a is a three-byte quan-
tity in the range −223 ≤ a < 223.

down4 160 a[+4]
Same as down1 , except that a is a four-byte quan-
tity in the range −231 ≤ a < 231.

y0 161
Set v ← v + y; i.e., move down y units. With luck,
this parameterless command will usually suffice, be-
cause the same kind of motion will occur several
times in succession; the following commands explain
how y gets particular values.

y1 162 a[+1]
Set y ← a and v ← v +a. The value of a is a signed
quantity in two’s complement notation, −128 ≤ a <
128. This command changes the current y spacing
and moves down by a.

y2 163 a[+2]
Same as y1 , but a is a two-byte-long parameter,
−32768 ≤ a < 32768.

y3 164 a[+3]
Same as y1 , but a is a three-byte-long parameter,
−223 ≤ a < 223.

y4 165 a[+4]
Same as y1 , but a is a four-byte-long parameter,
−231 ≤ a < 231.

z0 166
Set v ← v + z; i.e., move down z units. The ‘z’
commands are like the ‘y’ commands except that
they involve z instead of y.

z1 167 a[+1]
Set z ← a and v ← v +a. The value of a is a signed
quantity in two’s complement notation, −128 ≤ a <
128. This command changes the current z spacing
and moves down by a.

z2 168 a[+2]
Same as z1 , but a is a two-byte-long parameter,
−32768 ≤ a < 32768.

z3 169 a[+3]
Same as z1 , but a is a three-byte-long parameter,
−223 ≤ a < 223.

z4 170 a[+4]
Same as z1 , but a is a four-byte-long parameter,
−231 ≤ a < 231.

fnt num 0 171
Set f ← 0. Font 0 must previously have been de-
fined by a fnt def instruction, as explained below.

fnt num 1 through fnt num 63 (opcodes 172 to 234)
Set f ← 1, . . . , f ← 63, respectively.

fnt1 235 k[1]
Set f ← k. TEX82 uses this command for font num-
bers in the range 64 ≤ k < 256.

fnt2 236 k[2]
Same as fnt1 , except that k is two bytes long, so it
is in the range 0 ≤ k < 65536. TEX82 never gen-
erates this command, but large font numbers may
prove useful for specifications of color or texture, or
they may be used for special fonts that have fixed
numbers in some external coding scheme.

fnt3 237 k[3]
Same as fnt1 , except that k is three bytes long, so
it can be as large as 224 − 1.

fnt4 238 k[+4]
Same as fnt1 , except that k is four bytes long; this is
for the really big font numbers (and for the negative
ones).

xxx1 239 k[1] x[k]
This command is undefined in general; it functions
as a (k+2)-byte nop unless special DVI-reading pro-
grams are being used. TEX82 generates xxx1 when
a short enough \special appears, setting k to the
number of bytes being sent. It is recommended that
x be a string having the form of a keyword followed
by possible parameters relevant to that keyword.

xxx2 240 k[2] x[k]
Like xxx1 , but 0 ≤ k < 65536.

xxx3 241 k[3] x[k]
Like xxx1 , but 0 ≤ k < 224.

xxx4 242 k[4] x[k]
Like xxx1 , but k can be ridiculously large. TEX82
uses xxx4 when xxx1 would be incorrect.

fnt def1 243 k[1] c[4] s[4] d[4] a[1] l[1] n[a + l]
Define font k, where 0 ≤ k < 256; font definitions
will be explained shortly.

fnt def2 244 k[2] c[4] s[4] d[4] a[1] l[1] n[a + l]
Define font k, where 0 ≤ k < 65536.

fnt def3 245 k[3] c[4] s[4] d[4] a[1] l[1] n[a + l]
Define font k, where 0 ≤ k < 224.

fnt def4 246 k[+4] c[4] s[4] d[4] a[1] l[1] n[a + l]
Define font k, where −231 ≤ k < 231.

pre 247 i[1] num [4] den [4] mag [4] k[1] x[k]
Beginning of the preamble; this must come at the
very beginning of the file. Parameters i, num , den ,
mag , k, and x are explained below.

post 248
Beginning of the postamble, see below.

post post 249
Ending of the postamble, see below.

Commands 250–255 are undefined at the present time.

A.3 The preamble

The preamble contains basic information about the file
as a whole. As stated above, there are six parameters:

i[1] num [4] den [4] mag [4] k[1] x[k].

The i byte identifies DVI format; currently this byte is
always set to 2. (The value i = 3 is currently used for
an extended format that allows a mixture of right-to-left
and left-to-right typesetting. Some day we will set i = 4,
when DVI format makes another incompatible change—
perhaps in the year 2048.)

The next two parameters, num and den , are positive
integers that define the units of measurement; they are
the numerator and denominator of a fraction by which
all dimensions in the DVI file could be multiplied in order
to get lengths in units of 10−7 meters. (For example,
there are exactly 7227 TEX points in 254 centimeters,
and TEX82 works with scaled points where there are
216 sp in a point, so TEX82 sets num = 25400000 and
den = 7227 · 216 = 473628672.)

The mag parameter is what TEX82 calls \mag, i.e.,
1000 times the desired magnification. The actual frac-
tion by which dimensions are multiplied is therefore
mn/1000d. Note that if a TEX source document does
not call for any ‘true’ dimensions, and if you change it
only by specifying a different \mag setting, the DVI file
that TEX creates will be completely unchanged except
for the value of mag in the preamble and postamble.
(Fancy DVI-reading programs allow users to override the
mag setting when a DVI file is being printed.)

Finally, k and x allow the DVI writer to include a
comment, which is not interpreted further. The length
of comment x is k, where 0 ≤ k < 256.

A.4 Font definitions

Font definitions for a given font number k contain further
parameters

c[4] s[4] d[4] a[1] l[1] n[a + l].

The four-byte value c is the check sum that TEX (or
whatever program generated the DVI file) found in the
TFM file for this font; c should match the check sum of
the font found by programs that read this DVI file.

Parameter s contains a fixed-point scale factor that is
applied to the character widths in font k; font dimen-
sions in TFM files and other font files are relative to this
quantity, which is always positive and less than 227. It
is given in the same units as the other dimensions of the
DVI file. Parameter d is similar to s; it is the “design
size,” and (like s) it is given in DVI units. Thus, font k
is to be used at mag · s/1000d times its normal size.

The remaining part of a font definition gives the exter-
nal name of the font, which is an ASCII string of length
a + l. The number a is the length of the “area” or di-
rectory, and l is the length of the font name itself; the
standard local system font area is supposed to be used
when a = 0. The n field contains the area in its first a
bytes.

Font definitions must appear before the first use of a
particular font number. Once font k is defined, it must
not be defined again; however, we shall see below that
font definitions appear in the postamble as well as in
the pages, so in this sense each font number is defined
exactly twice, if at all. Like nop commands, font defini-
tions can appear before the first bop , or between an eop
and a bop .

A.5 The postamble

The last page in a DVI file is followed by ‘post ’; this
command introduces the postamble, which summarizes
important facts that TEX has accumulated about the
file, making it possible to print subsets of the data with
reasonable efficiency. The postamble has the form

post p[4] num [4] den [4] mag [4] l[4] u[4] s[2] t[2]
〈 font definitions 〉
post post q[4] i[1] 223’s[≥ 4]

Here p is a pointer to the final bop in the file. The next
three parameters, num , den , and mag , are duplicates of
the quantities that appeared in the preamble.

Parameters l and u give respectively the height-plus-
depth of the tallest page and the width of the widest
page, in the same units as other dimensions of the file.
These numbers might be used by a DVI-reading program
to position individual “pages” on large sheets of film or
paper; however, the standard convention for output on
normal size paper is to position each page so that the
upper left-hand corner is exactly one inch from the left
and the top. Experience has shown that it is unwise
to design DVI-to-printer software that attempts cleverly
to center the output; a fixed position of the upper left
corner is easiest for users to understand and to work
with. Therefore l and u are often ignored.

Parameter s is the maximum stack depth (i.e., the
largest excess of push commands over pop commands)
needed to process this file. Then comes t, the total num-
ber of pages (bop commands) present.

The postamble continues with font definitions, which
are any number of fnt def commands as described above,
possibly interspersed with nop commands. Each font
number that is used in the DVI file must be defined ex-
actly twice: Once before it is first selected by a fnt com-
mand, and once in the postamble.

The last part of the postamble, following the post post
byte that signifies the end of the font definitions, con-
tains q, a pointer to the post command that started the
postamble. An identification byte, i, comes next; this
currently equals 2, as in the preamble.

The i byte is followed by four or more bytes that are
all equal to the decimal number 223 (i.e., 3́37 in octal).
TEX puts out four to seven of these trailing bytes, until
the total length of the file is a multiple of four bytes,
since this works out best on machines that pack four
bytes per word; but any number of 223’s is allowed, as
long as there are at least four of them. In effect, 223 is
a sort of signature that is added at the very end.

This curious way to finish off a DVI file makes it feasi-
ble for DVI-reading programs to find the postamble first,
on most computers, even though TEX wants to write the
postamble last. Most operating systems permit random
access to individual words or bytes of a file, so the DVI

reader can start at the end and skip backwards over the
223’s until finding the identification byte. Then it can
back up four bytes, read q, and move to byte q of the
file. This byte should, of course, contain the value 248
(post); now the postamble can be read, so the DVI reader
discovers all the information needed for typesetting the
pages. Note that it is also possible to skip through the
DVI file at reasonably high speed to locate a particular
page, if that proves desirable. This saves a lot of time,
since DVI files used in production jobs tend to be large.

B Generic Font File Format

B.1 Introduction

The most important output produced by a typical run of
METAFONT is the “generic font” (GF) file that specifies
the bit patterns of the characters that have been drawn.
The term generic indicates that this file format doesn’t
match the conventions of any name-brand manufacturer;
but it is easy to convert GF files to the special format re-
quired by almost all digital phototypesetting equipment.
There’s a strong analogy between the DVI files written
by TEX and the GF files written by METAFONT; and, in
fact, the file formats have a lot in common.

A GF file is a stream of 8-bit bytes that may be re-
garded as a series of commands in a machine-like lan-
guage. The first byte of each command is the operation
code, and this code is followed by zero or more bytes
that provide parameters to the command. The parame-
ters themselves may consist of several consecutive bytes;
for example, the ‘boc ’ (beginning of character) command

has six parameters, each of which is four bytes long. Pa-
rameters are usually regarded as nonnegative integers;
but four-byte-long parameters can be either positive or
negative, hence they range in value from −231 to 231−1.
As in TFM files, numbers that occupy more than one byte
position appear in BigEndian order, and negative num-
bers appear in two’s complement notation.

A GF file consists of a “preamble,” followed by a
sequence of one or more “characters,” followed by a
“postamble.” The preamble is simply a pre command,
with its parameters that introduce the file; this must
come first. Each “character” consists of a boc command,
followed by any number of other commands that specify
“black” pixels, followed by an eoc command. The char-
acters appear in the order that METAFONT generated
them. If we ignore no-op commands (which are allowed
between any two commands in the file), each eoc com-
mand is immediately followed by a boc command, or by
a post command; in the latter case, there are no more
characters in the file, and the remaining bytes form the
postamble. Further details about the postamble will be
explained later.

Some parameters in GF commands are “pointers.”
These are four-byte quantities that give the location
number of some other byte in the file; the first file byte
is number 0, then comes number 1, and so on.

The GF format is intended to be both compact and eas-
ily interpreted by a machine. Compactness is achieved
by making most of the information relative instead of
absolute. When a GF-reading program reads the com-
mands for a character, it keeps track of two quantities:
(a) the current column number, m; and (b) the current
row number, n. These are 32-bit signed integers, al-
though most actual font formats produced from GF files
will need to curtail this vast range because of practical
limitations. (METAFONT output will never allow |m| or
|n| to get extremely large, but the GF format tries to be
more general.)

How do GF’s row and column numbers correspond to
the conventions of TEX and METAFONT? Well, the “ref-
erence point” of a character, in TEX’s view, is considered
to be at the lower left corner of the pixel in row 0 and
column 0. This point is the intersection of the baseline
with the left edge of the type; it corresponds to location
(0, 0) in METAFONT programs. Thus the pixel in GF

row 0 and column 0 is METAFONT’s unit square, com-
prising the region of the plane whose coordinates both lie
between 0 and 1. The pixel in GF row n and column m
consists of the points whose METAFONT coordinates
(x, y) satisfy m ≤ x ≤ m + 1 and n ≤ y ≤ n + 1. Nega-
tive values of m and x correspond to columns of pixels
left of the reference point; negative values of n and y
correspond to rows of pixels below the baseline.

Besides m and n, there’s also a third aspect of the
current state, namely the paint switch , which is always
either black or white . Each paint command advances
m by a specified amount d, and blackens the interven-
ing pixels if paint switch = black ; then the paint switch

changes to the opposite state. GF’s commands are de-
signed so that m will never decrease within a row, and
n will never increase within a character; hence there is
no way to whiten a pixel that has been blackened.

B.2 Summary of GF commands

Here is a list of all the commands that may appear in a
GF file. Each command is specified by its symbolic name
(e.g., boc), its opcode byte (e.g., 67), and its parameters
(if any). The parameters are followed by a bracketed
number telling how many bytes they occupy; for exam-
ple, ‘d[2]’ means that parameter d is two bytes long.

paint 0 0
This is a paint command with d = 0; it does nothing
but change the paint switch from black to white or
vice versa.

paint 1 through paint 63 (opcodes 1 to 63)
These are paint commands with d = 1 to 63, defined
as follows: If paint switch = black , blacken d pixels
of the current row n, in columns m through m +
d− 1 inclusive. Then, in any case, complement the
paint switch and advance m by d.

paint1 64 d[1]
This is a paint command with a specified value of d;
METAFONT uses it to paint when 64 ≤ d < 256.

paint2 65 d[2]
Same as paint1 , but d can be as high as 65535.

paint3 66 d[3]
Same as paint1 , but d can be as high as 224 − 1.
METAFONT never needs this command, and it is
hard to imagine anybody making practical use of
it; surely a more compact encoding will be desir-
able when characters can be this large. But the
command is there, anyway, just in case.

boc 67 c[+4] p[+4] min m [+4] max m [+4] min n [+4]
max n [+4]

Beginning of a character: Here c is the character
code, and p points to the previous character begin-
ning (if any) for characters having this code num-
ber modulo 256. (The pointer p is −1 if there
was no prior character with an equivalent code.)
The values of registers m and n defined by the in-
structions that follow for this character must satisfy
min m ≤ m ≤ max m and min n ≤ n ≤ max n .
(The values of max m and min n need not be
the tightest bounds possible.) When a GF-reading
program sees a boc , it can use min m , max m ,
min n , and max n to initialize the bounds of an
array. Then it sets m ← min m , n ← max n , and
paint switch ← white .

boc1 68 c[1] del m [1] max m [1] del n [1] max n [1]
Same as boc , but p is assumed to be −1; also
del m = max m − min m and del n = max n −
min n are given instead of min m and min n . The
one-byte parameters must be between 0 and 255,
inclusive. (This abbreviated boc saves 19 bytes per
character, in common cases.)

eoc 69
End of character: All pixels blackened so far con-
stitute the pattern for this character. In particular,
a completely blank character might have eoc imme-
diately following boc .

skip0 70
Decrease n by 1 and set m ← min m ,
paint switch ← white . (This finishes one row and
begins another, ready to whiten the leftmost pixel
in the new row.)

skip1 71 d[1]
Decrease n by d + 1, set m ← min m , and set
paint switch ← white . This is a way to produce
d all-white rows.

skip2 72 d[2]
Same as skip1 , but d can be as large as 65535.

skip3 73 d[3]
Same as skip1 , but d can be as large as 224 − 1.
METAFONT obviously never needs this command.

new row 0 74
Decrease n by 1 and set m ← min m ,
paint switch ← black . (This finishes one row and
begins another, ready to blacken the leftmost pixel
in the new row.)

new row 1 through new row 164 (opcodes 75 to 238)
Same as new row 0 , but with m ← min m + 1
through min m + 164, respectively.

xxx1 239 k[1] x[k]
This command is undefined in general; it functions
as a (k+2)-byte no op unless special GF-reading pro-
grams are being used. METAFONT generates xxx
commands when encountering a special string; this
occurs in the GF file only between characters, after
the preamble, and before the postamble. However,
xxx commands might appear anywhere in GF files
generated by other processors. It is recommended
that x be a string having the form of a keyword fol-
lowed by possible parameters relevant to that key-
word.

xxx2 240 k[2] x[k]
Like xxx1 , but 0 ≤ k < 65536.

xxx3 241 k[3] x[k]
Like xxx1 , but 0 ≤ k < 224. METAFONT uses
this when sending a special string whose length
exceeds 255.

xxx4 242 k[4] x[k]
Like xxx1 , but k can be ridiculously large; k mustn’t
be negative.

yyy 243 y[+4]
This command is undefined in general; it functions
as a 5-byte no op unless special GF-reading pro-
grams are being used. METAFONT puts scaled
numbers into yyy ’s, as a result of numspecial com-
mands; the intent is to provide numeric parameters
to xxx commands that immediately precede.

no op 244
No operation, do nothing. Any number of no op ’s
may occur between GF commands, but a no op can-
not be inserted between a command and its param-
eters or between two parameters.

char loc 245 c[1] dx [+4] dy [+4] w[+4] p[+4]
This command will appear only in the postamble,
which will be explained shortly.

char loc0 246 c[1] dm [1] w[+4] p[+4]
Same as char loc , except that dy is assumed to be
zero, and the value of dx is taken to be 65536 ∗ dm ,
where 0 ≤ dm < 256.

pre 247 i[1] k[1] x[k]
Beginning of the preamble; this must come at the
very beginning of the file. Parameter i is an iden-
tifying number for GF format, currently 131. The
other information is merely commentary; it is not
given special interpretation like xxx commands are.
(Note that xxx commands may immediately follow
the preamble, before the first boc .)

post 248
Beginning of the postamble, see below.

post post 249
Ending of the postamble, see below.

Commands 250–255 are undefined at the present time.

B.3 The postamble

The last character in a GF file is followed by ‘post ’; this
command introduces the postamble, which summarizes
important facts that METAFONT has accumulated. The
postamble has the form

post p[4] ds [4] cs [4] hppp [4] vppp [4] min m [+4]
max m [+4] min n [+4] max n [+4]

〈 character locators 〉
post post q[4] i[1] 223’s[≥ 4]

Here p is a pointer to the byte following the final eoc in
the file (or to the byte following the preamble, if there
are no characters); it can be used to locate the begin-
ning of xxx commands that might have preceded the
postamble. The ds and cs parameters give the design
size and check sum, respectively, which are exactly the
values put into the header of any TFM file that shares in-
formation with this GF file. Parameters hppp and vppp
are the ratios of pixels per point, horizontally and ver-
tically, expressed as scaled integers (i.e., multiplied by
216); they can be used to correlate the font with specific
device resolutions, magnifications, and “at sizes.” Then
come min m , max m , min n , and max n , which bound
the values that registers m and n assume in all charac-
ters in this GF file. (These bounds need not be the best
possible; max m and min n may, on the other hand, be
tighter than the similar bounds in boc commands. For
example, some character may have min n = −100 in its
boc , but it might turn out that n never gets lower than
−50 in any character; then min n can have any value
≤ −50. If there are no characters in the file, it’s possible
to have min m > max m and/or min n > max n .)

Character locators are introduced by char loc com-
mands, which specify a character residue c, character es-
capements (dx , dy), a character width w, and a pointer p
to the beginning of that character. (If two or more char-
acters have the same code c modulo 256, only the last
will be indicated; the others can be located by following
backpointers. Characters whose codes differ by a mul-
tiple of 256 are assumed to share the same font metric
information, hence the TFM file contains only residues of
character codes modulo 256. This convention is intended
for oriental languages, when there are many character
shapes but few distinct widths.)

The character escapements (dx , dy) are the values of
METAFONT’s chardx and chardy parameters; they
are in units of scaled pixels; i.e., dx is in horizontal
pixel units times 216, and dy is in vertical pixel units
times 216. This is the intended amount of displacement
after typesetting the character; for DVI files, dy should
be zero, but other document file formats allow nonzero
vertical escapement.

The character width w duplicates the information in
the TFM file; it is 224 times the ratio of the true width to
the font’s design size.

The backpointer p points to the character’s boc , or
to the first of a sequence of consecutive xxx or yyy or
no op commands that immediately precede the boc , if
such commands exist; such “special” commands essen-
tially belong to the characters, while the special com-
mands after the final character belong to the postamble
(i.e., to the font as a whole). This convention about p
applies also to the backpointers in boc commands, even
though it wasn’t explained in the description of boc .

Pointer p might be −1 if the character exists in the
TFM file but not in the GF file. This unusual situation can
arise in METAFONT output if the user had proofing <
0 when the character was being shipped out, but then
made proofing ≥ 0 in order to get a GF file.

The last part of the postamble, following the post post
byte that signifies the end of the character locators, con-
tains q, a pointer to the post command that started the
postamble. An identification byte, i, comes next; this
currently equals 131, as in the preamble.

The i byte is followed by four or more bytes that are
all equal to the decimal number 223 (i.e., ˝DF in hex-
adecimal). METAFONT puts out four to seven of these
trailing bytes, until the total length of the file is a multi-
ple of four bytes, since this works out best on machines
that pack four bytes per word; but any number of 223’s
is allowed, as long as there are at least four of them. In
effect, 223 is a sort of signature that is added at the very
end.

This curious way to finish off a GF file makes it feasi-
ble for GF-reading programs to find the postamble first,
on most computers, even though METAFONT wants to
write the postamble last. Most operating systems per-
mit random access to individual words or bytes of a file,
so the GF reader can start at the end and skip backwards
over the 223’s until finding the identification byte. Then

it can back up four bytes, read q, and move to byte q of
the file. This byte should, of course, contain the value
248 (post); now the postamble can be read, so the GF

reader can discover all the information needed for indi-
vidual characters.

C Packed File Format

C.1 Introduction

The packed file format is a compact representation of
the data contained in a GF file. The information con-
tent is the same, but packed (PK) files are almost always
less than half the size of their GF counterparts. They are
also easier to convert into a raster representation because
they do not have a profusion of paint , skip , and new row
commands to be separately interpreted. In addition, the
PK format expressedly forbids special commands within
a character. The minimum bounding box for each char-
acter is explicit in the format, and does not need to be
scanned for as in the GF format. Finally, the width and
escapement values are combined with the raster infor-
mation into character “packets,” making it simpler in
many cases to process a character.

A PK file is organized as a stream of 8-bit bytes. At
times, these bytes might be split into 4-bit nybbles or
single bits, or combined into multiple byte parameters.
When bytes are split into smaller pieces, the ‘first’ piece
is always the most significant of the byte. For instance,
the first bit of a byte is the bit with value 128; the first
nybble can be found by dividing a byte by 16. Similarly,
when bytes are combined into multiple byte parameters,
the first byte is the most significant of the parameter.
If the parameter is signed, it is represented by two’s-
complement notation.

The set of possible eight-bit values is separated into
two sets, those that introduce a character definition, and
those that do not. The values that introduce a character
definition range from 0 to 239; byte values above 239 are
interpreted as commands. Bytes that introduce charac-
ter definitions are called flag bytes, and various fields
within the byte indicate various things about how the
character definition is encoded. Command bytes have
zero or more parameters, and can never appear within
a character definition or between parameters of another
command, where they would be interpeted as data.

A PK file consists of a preamble, followed by a se-
quence of one or more character definitions, followed by
a postamble. The preamble command must be the first
byte in the file, followed immediately by its parameters.
Any number of character definitions may follow, and any
command but the preamble command and the postam-
ble command may occur between character definitions.
The very last command in the file must be the postam-
ble.

The packed file format is intended to be easy to read
and interpret by device drivers. The small size of the
file reduces the input/output overhead each time a font
is loaded. For those drivers that load and save each
font file into memory, the small size also helps reduce

the memory requirements. The length of each character
packet is specified, allowing the character raster data to
be loaded into memory by simply counting bytes, rather
than interpreting each command; then, each character
can be interpreted on a demand basis. This also makes it
possible for a driver to skip a particular character quickly
if it knows that the character is unused.

C.2 Summary of PK commands

First, the command bytes will be presented; then the for-
mat of the character definitions will be defined. Eight of
the possible sixteen commands (values 240 through 255)
are currently defined; the others are reserved for future
extensions. The commands are listed below. Each com-
mand is specified by its symbolic name (e.g., pk no op),
its opcode byte, and any parameters. The parameters
are followed by a bracketed number telling how many
bytes they occupy, with the number preceded by a plus
sign if it is a signed quantity. (Four byte quantities are
always signed, however.)

pk xxx1 240 k[1] x[k]
This command is undefined in general; it functions
as a (k + 2)-byte no op unless special PK-reading
programs are being used. METAFONT generates
xxx commands when encountering a special string.
It is recommended that x be a string having the
form of a keyword followed by possible parameters
relevant to that keyword.

pk xxx2 241 k[2] x[k]
Like pk xxx1 , but 0 ≤ k < 65536.

pk xxx3 242 k[3] x[k]
Like pk xxx1 , but 0 ≤ k < 224. METAFONT uses
this when sending a special string whose length
exceeds 255.

pk xxx4 243 k[4] x[k]
Like pk xxx1 , but k can be ridiculously large; k
musn’t be negative.

pk yyy 244 y[4]
This command is undefined in general; it functions
as a five-byte no op unless special PK reading pro-
grams are being used. METAFONT puts scaled
numbers into yyy ’s, as a result of numspecial com-
mands; the intent is to provide numeric parameters
to xxx commands that immediately precede.

pk post 245
Beginning of the postamble. This command is fol-
lowed by enough pk no op commands to make the
file a multiple of four bytes long. Zero through three
bytes are usual, but any number is allowed. This
should make the file easy to read on machines that
pack four bytes to a word.

pk no op 246
No operation, do nothing. Any number of
pk no op ’s may appear between PK commands, but
a pk no op cannot be inserted between a command
and its parameters, between two parameters, or in-
side a character definition.

pk pre 247 i[1] k[1] x[k] ds [4] cs [4] hppp [4] vppp [4]
Preamble command. Here, i is the identification
byte of the file, currently equal to 89. The string x is
merely a comment, usually indicating the source of
the PK file. The parameters ds and cs are the design
size of the file in 1/220 points, and the checksum of
the file, respectively. The checksum should match
the TFM file and the GF files for this font. Parameters
hppp and vppp are the ratios of pixels per point,
horizontally and vertically, multiplied by 216; they
can be used to correlate the font with specific device
resolutions, magnifications, and “at sizes.”

C.3 Packing algorithms

The PK format has two conflicting goals: to pack charac-
ter raster and size information as compactly as possible,
while retaining ease of translation into raster and other
forms. A suitable compromise was found in the use of
run-encoding of the raster information. Instead of pack-
ing the individual bits of the character, we instead count
the number of consecutive ‘black’ or ‘white’ pixels in a
horizontal raster row, and then encode this number. Run
counts are found for each row from left to right, travers-
ing rows from the top to bottom. This is essentially the
way the GF format works. Instead of presenting each row
individually, however, we concatenate all of the horizon-
tal raster rows into one long string of pixels, and encode
this row. With knowledge of the width of the bit-map,
the original character glyph can easily be reconstructed.
In addition, we do not need special commands to mark
the end of one row and the beginning of the next.

Next, we place the burden of finding the minimum
bounding box on the part of the font generator, since
the characters will usually be used much more often than
they are generated. The minimum bounding box is the
smallest rectangle that encloses all ‘black’ pixels of a
character. We also eliminate the need for a special end
of character marker, by supplying exactly as many bits
as are required to fill the minimum bounding box, from
which the end of the character is implicit.

Let us next consider the distribution of the run counts.
Analysis of several dozen pixel files at 300 dots per inch
yields a distribution peaking at four, falling off slowly
until ten, then a bit more steeply until twenty, and then
asymptotically approaching the horizontal. Thus, the
great majority of our run counts will fit in a four-bit nyb-
ble. The eight-bit byte is attractive for our run-counts,
as it is the standard on many systems; however, the
wasted four bits in the majority of cases seem a high
price to pay. Another possibility is to use a Huffman-
type encoding scheme with a variable number of bits for
each run-count; this was rejected because of the over-
head in fetching and examining individual bits in the
file. Thus, the character raster definitions in the PK file
format are based on the four-bit nybble.

An analysis of typical pixel files yielded another inter-
esting statistic: Fully 37% of the raster rows were dupli-
cates of the previous row. Thus, the PK format allows the

specification of repeat counts, which indicate how many
times a horizontal raster row is to be repeated. These re-
peated rows are taken out of the character glyph before
individual rows are concatenated into the long string of
pixels.

For elegance, we disallow a run count of zero. The
case of a null raster description should be gleaned from
the character width and height being equal to zero, and
no raster data should be read. No other zero counts are
ever necessary. Also, in the absence of repeat counts,
the repeat value is set to be zero (only the original row
is sent.) If a repeat count is seen, it takes effect on the
current row. The current row is defined as the row on
which the first pixel of the next run count will lie. The
repeat count is set back to zero when the last pixel in
the current row is seen, and the row is sent out.

This poses a problem for entirely black and entirely
white rows, however. Let us say that the current row
ends with four white pixels, and then we have five en-
tirely empty rows, followed by a black pixel at the be-
ginning of the next row, and the character width is ten
pixels. We would like to use a repeat count, but there
is no legal place to put it. If we put it before the white
run count, it will apply to the current row. If we put it
after, it applies to the row with the black pixel at the be-
ginning. Thus, entirely white or entirely black repeated
rows are always packed as large run counts (in this case,
a white run count of 54) rather than repeat counts.

Now we turn our attention to the actual packing of the
run counts and repeat counts into nybbles. There are
only sixteen possible nybble values. We need to indicate
run counts and repeat counts. Since the run counts are
much more common, we will devote the majority of the
nybble values to them. We therefore indicate a repeat
count by a nybble of 14 followed by a packed number,
where a packed number will be explained later. Since
the repeat count value of one is so common, we indicate
a repeat one command by a single nybble of 15. A 14
followed by the packed number 1 is still legal for a repeat
one count. The run counts are coded directly as packed
numbers.

For packed numbers, therefore, we have the nybble
values 0 through 13. We need to represent the positive
integers up to, say, 231−1. We would like the more com-
mon smaller numbers to take only one or two nybbles,
and the infrequent large numbers to take three or more.
We could therefore allocate one nybble value to indicate
a large run count taking three or more nybbles. We do
this with the value 0.

We are left with the values 1 through 13. We can
allocate some of these, say dyn f , to be one-nybble run
counts. These will work for the run counts 1, . . . , dyn f .
For subsequent run counts, we will use a nybble greater
than dyn f , followed by a second nybble, whose value
can run from 0 through 15. Thus, the two-nybble values
will run from dyn f + 1, . . . , (13 − dyn f) ∗ 16 + dyn f .
We have our definition of large run count values now,
being all counts greater than (13− dyn f) ∗ 16 + dyn f .

We can analyze our several dozen pixel files and de-
termine an optimal value of dyn f , and use this value
for all of the characters. Unfortunately, values of dyn f
that pack small characters well tend to pack the large
characters poorly, and values that pack large characters
well are not efficient for the smaller characters. Thus, we
choose the optimal dyn f on a character basis, picking
the value that will pack each individual character in the
smallest number of nybbles. Legal values of dyn f run
from 0 (with no one-nybble run counts) to 13 (with no
two-nybble run counts).

Our only remaining task in the coding of packed num-
bers is the large run counts. We use a scheme suggested
by D. E. Knuth that simply and elegantly represents ar-
bitrarily large values. The general scheme to represent
an integer i is to write its hexadecimal representation,
with leading zeros removed. Then we count the num-
ber of digits, and prepend one less than that many zeros
before the hexadecimal representation. Thus, the values
from one to fifteen occupy one nybble; the values sixteen
through 255 occupy three, the values 256 through 4095
require five, etc.

For our purposes, however, we have already repre-
sented the numbers one through (13−dyn f)∗16+dyn f .
In addition, the one-nybble values have already been
taken by our other commands, which means that only
the values from sixteen up are available to us for long
run counts. Thus, we simply normalize our long run
counts, by subtracting (13− dyn f) ∗ 16+ dyn f +1 and
adding 16, and then we represent the result according to
the scheme above.

C.4 Decoding PK files

The final algorithm for decoding the run counts based
on the above scheme might look like the Pascal routine
in figure 1, assuming that a procedure called pk nyb is
available to get the next nybble from the file, and as-
suming that the global repeat count indicates whether
a row needs to be repeated. Note that this routine is
recursive, but since a repeat count can never directly
follow another repeat count, it can only be recursive to
one level.

For low resolution fonts, or characters with ‘gray’ ar-
eas, run encoding can often make the character many
times larger. Therefore, for those characters that can-
not be encoded efficiently with run counts, the PK format
allows bit-mapping of the characters. This is indicated
by a dyn f value of 14. The bits are packed tightly, by
concatenating all of the horizontal raster rows into one
long string, and then packing this string eight bits to a
byte. The number of bytes required can be calculated
by b(width ∗ height + 7)/8c. This format should only
be used when packing the character by run counts takes
more bytes than this, although, of course, it is legal for
any character. Any extra bits in the last byte should be
set to zero.

At this point, we are ready to introduce the format for
a character descriptor. It consists of three parts: a flag
byte, a character preamble, and the raster data. The
most significant four bits of the flag byte yield the dyn f
value for that character. (Notice that only values of 0
through 14 are legal for dyn f , with 14 indicating a bit
mapped character; thus, the flag bytes do not conflict
with the command bytes, whose upper nybble is always
15.) The next bit (with weight 8) indicates whether the
first run count is a black count or a white count, with a
one indicating a black count. For bit-mapped characters,
this bit should be set to a zero. The next bit (with weight
4) indicates whether certain later parameters (referred
to as size parameters) are given in one-byte or two-byte
quantities, with a one indicating that they are in two-
byte quantities. The last two bits are concatenated on
to the beginning of the packet-length parameter in the
character preamble, which will be explained below.

However, if the last three bits of the flag byte are
all set (normally indicating that the size parameters are
two-byte values and that a 3 should be prepended to
the length parameter), then a long format of the charac-
ter preamble should be used instead of one of the short
forms.

Therefore, there are three formats for the character
preamble; the one that is used depends on the least sig-
nificant three bits of the flag byte. If the least significant
three bits are in the range zero through three, the short
format is used. If they are in the range four through
six, the extended short format is used. Otherwise, if the
least significant bits are all set, then the long form of the
character preamble is used. The preamble formats are
explained below.

Short form flag [1] pl [1] cc [1] tfm [3] dm [1] w[1] h[1]
hoff [+1] voff [+1].
If this format of the character preamble is used,
the above parameters must all fit in the indicated
number of bytes, signed or unsigned as indicated.
Almost all of the standard TEX font characters fit;
the few exceptions are fonts such as cminch.

Extended short form flag [1] pl [2] cc [1] tfm [3] dm [2]
w[2] h[2] hoff [+2] voff [+2].
Larger characters use this extended format.

Long form flag [1] pl [4] cc [4] tfm [4] dx [4] dy [4] w[4]
h[4] hoff [4] voff [4].
This is the general format which allows all of the
parameters of the GF file format, including vertical
escapement.

The flag parameter is the flag byte. The parameter pl
(packet length) contains the offset of the byte follow-
ing this character descriptor, with respect to the begin-
ning of the tfm width parameter. This is given so a
PK reading program can, once it has read the flag byte,
packet length, and character code (cc), skip over the
character by simply reading this many more bytes. For
the two short forms of the character preamble, the last

function pk packed num : integer ;
var i, j: integer ;
begin i ← get nyb ;
if i = 0 then

begin
repeat j ← get nyb ; incr (i);
until j 6= 0;
while i > 0 do

begin j ← j ∗ 16 + get nyb ; decr (i);
end;

pk packed num ← j − 15 + (13− dyn f) ∗ 16 + dyn f ;
end

else if i ≤ dyn f then pk packed num ← i
else if i < 14 then pk packed num ← (i− dyn f − 1) ∗ 16 + get nyb + dyn f + 1

else begin
if repeat count 6= 0 then abort (´SecondÃrepeatÃcountÃforÃthisÃrow!´);
repeat count ← 1; { prevent recursion more than one level }
if i = 14 then ! repeat count ← pk packed num ;
send out (true , repeat count); pk packed num ← pk packed num ;
end;

end;

Figure 1: Algorithm for decoding run counts in a PK file

two bits of the flag byte should be considered the two
most-significant bits of the packet length. For the short
format, the true packet length might be calculated as
(flag mod 4) · 256 + pl ; for the short extended format, it
might be calculated as (flag mod 4) · 65536 + pl .

The w parameter is the width and the h parameter is
the height in pixels of the minimum bounding box. The
dx and dy parameters are the horizontal and vertical
escapements, respectively. In the short formats, dy is
assumed to be zero and dm is dx but in pixels; in the
long format, dx and dy are both in pixels multiplied by
216. The hoff is the horizontal offset from the upper
left pixel to the reference pixel; the voff is the vertical
offset. They are both given in pixels, with right and
down being positive. The reference pixel is the pixel that
occupies the unit square in METAFONT; the META-
FONT reference point is the lower left hand corner of
this pixel. (See the example below.)

TEX requires all characters that have the same charac-
ter codes modulo 256 to have also the same tfm widths
and escapement values. The PK format does not itself
make this a requirement, but in order for the font to
work correctly with the TEX software, this constraint
should be observed. (The standard version of TEX can-
not output character codes greater than 255, but ex-
tended versions do exist.)

Following the character preamble is the raster infor-
mation for the character, packed by run counts or by
bits, as indicated by the flag byte. If the character is
packed by run counts and the required number of nyb-
bles is odd, then the last byte of the raster description
should have a zero for its least significant nybble.

C.5 An example character

As an illustration of the PK format, the character Ξ from
the font amr10 at 300 dots per inch will be encoded.
This character was chosen because it illustrates some
of the borderline cases. The raster for the character is
shown in figure 2. The width of the minimum bounding
box for this character is 20; its height is 29. The ‘+’
represents the reference pixel; notice how it lies outside
the minimum bounding box. The hoff value is −2, and
the voff is 28.

The first task is to calculate the run counts and repeat
counts. The repeat counts are placed at the first tran-
sition (black to white or white to black) in a row, and
are enclosed in brackets. White counts are enclosed in
parentheses. It is relatively easy to generate the counts
list:

82 [2] (16) 2 (42) [2] 2 (12) 2 (4) [3]
16 (4) [2] 2 (12) 2 (62) [2] 2 (16) 82

Note that any duplicated rows that are not all white or
all black are removed before the run counts are calcu-
lated. The rows thus removed are rows 5, 6, 10, 11, 13,
14, 15, 17, 18, 23, and 24.

The next step in the encoding of this character is to
calculate the optimal value of dyn f . The details of how
this calculation is done are not important here; suffice it
to say that there is a simple algorithm that can deter-
mine the best value of dyn f in one pass over the count
list. For this character, the optimal value turns out to
be 8 (atypically low). Thus, all count values less than
or equal to 8 are packed in one nybble; those from nine
to (13 − 8) ∗ 16 + 8 or 88 are packed in two nybbles.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 +

Figure 2: Character Ξ of amr10 (the row numbers are chosen for convenience, and are not METAFONT’s
row numbers.)

The run encoded values now become (in hex, separated
according to the above list):

D9 E2 97 2 B1 E2 2 93 2 4 E3

97 4 E2 2 93 2 C5 E2 2 97 D9

which comes to 36 nybbles, or 18 bytes. This is shorter
than the 73 bytes required for the bit map, so we use
the run count packing.

The short form of the character preamble is used be-
cause all of the parameters fit in their respective lengths.
The packet length is therefore 18 bytes for the raster,
plus eight bytes for the character preamble parameters
following the character code, or 26. The tfm width
for this character is 640796, or 9C71C in hexadecimal.
The horizontal escapement is 25 pixels. The flag byte
is 88 hex, indicating the short preamble, the black first
count, and the dyn f value of 8. The final total character
packet, in hexadecimal, is given in figure 3.

D Font metric data

D.1 Introduction

The idea behind TFM files is that typesetting routines
like TEX need a compact way to store the relevant infor-
mation about several dozen fonts, and computer centers
need a compact way to store the relevant information
about several hundred fonts. TFM files are compact, and

Flag byte 88

Packet length 1A

Character code 04

tfm width 09 C7 1C

Horizontal escapement (pixels) 19

Width of bit map 14

Height of bit map 1D

Horizontal offset (signed) FE

Vertical offset 1C

Raster data D9 E2 97

2B 1E 22

93 24 E3

97 4E 22

93 2C 5E

22 97 D9

Figure 3: PK character packet for Ξ of amr10

most of the information they contain is highly relevant,
so they provide a solution to the problem.

The information in a TFM file appears in a sequence
of 8-bit bytes. Since the number of bytes is always a
multiple of 4, we could also regard the file as a sequence
of 32-bit words; but TEX uses the byte interpretation,
and so do we. Note that the bytes are considered to be
unsigned numbers.

D.2 Summary of TFM files

D.2.1 The header

The first 24 bytes (6 words) of a TFM file contain twelve
16-bit integers that give the lengths of the various sub-
sequent portions of the file. These twelve integers are,
in order:

lf = length of the entire file, in words;
lh = length of the header data, in words;
bc = smallest character code in the font;
ec = largest character code in the font;

nw = number of words in the width table;
nh = number of words in the height table;
nd = number of words in the depth table;
ni = number of words in the

italic correction table;
nl = number of words in the lig/kern table;
nk = number of words in the kern table;
ne = number of words in the

extensible character table;
np = number of font parameter words.

They are all nonnegative and less than 215. We must
have bc − 1 ≤ ec ≤ 255, ne ≤ 256, and

lf = 6 + lh + (ec − bc + 1) + nw + nh

+ nd + ni + nl + nk + ne + np .

Note that a font may contain as many as 256 characters
(if bc = 0 and ec = 255), and as few as 0 characters (if
bc = ec + 1).

Incidentally, when two or more 8-bit bytes are com-
bined to form an integer of 16 or more bits, the most
significant bytes appear first in the file. This is called
BigEndian order.

D.2.2 TFM data

The rest of the TFM file may be regarded as a sequence
of ten data arrays having the informal specification

header :array [0 → lh − 1] of stuff
char info :array [bc → ec] of char info word

width :array [0 → nw − 1] of fix word
height :array [0 → nh − 1] of fix word
depth :array [0 → nd − 1] of fix word
italic :array [0 → ni − 1] of fix word

lig kern :array [0 → nl − 1] of lig kern command
kern :array [0 → nk − 1] of fix word

exten :array [0 → ne − 1] of extensible recipe
param :array [1 → np] of fix word

The most important data type used here is a fix word ,
which is a 32-bit representation of a binary fraction. A

fix word is a signed quantity, with the two’s complement
of the entire word used to represent negation. Of the 32
bits in a fix word , exactly 12 are to the left of the binary
point; thus, the largest fix word value is 2048 − 2−20,
and the smallest is −2048. We will see below, however,
that all but one of the fix word values will lie between
−16 and +16.

The first data array is a block of header information,
which contains general facts about the font. The header
must contain at least two words, and for TFM files to
be used with Xerox printing software it must contain
at least 18 words, allocated as described below. When
different kinds of devices need to be interfaced, it may
be necessary to add further words to the header block.

header [0] is a 32-bit check sum that TEX will copy into
the DVI output file whenever it uses the font. Later
on when the DVI file is printed, possibly on another
computer, the actual font that gets used is sup-
posed to have a check sum that agrees with the one
in the TFM file used by TEX. In this way, users will
be warned about potential incompatibilities. (How-
ever, if the check sum is zero in either the font file
or the TFM file, no check is made.) The actual re-
lation between this check sum and the rest of the
TFM file is not important; the check sum is simply
an identification number with the property that in-
compatible fonts almost always have distinct check
sums.

header [1] is a fix word containing the design size of the
font, in units of TEX points (7227 TEX points =
254 cm). This number must be at least 1.0; it is
fairly arbitrary, but usually the design size is 10.0
for a “10 point” font, i.e., a font that was designed
to look best at a 10-point size, whatever that really
means. When a TEX user asks for a font ‘at δ pt’,
the effect is to override the design size and replace
it by δ, and to multiply the x and y coordinates of
the points in the font image by a factor of δ divided
by the design size. All other dimensions in the TFM

file are fix word numbers in design-size units. Thus,
for example, the value of param [6], one em or \quad,
is often the fix word value 220 = 1.0, since many
fonts have a design size equal to one em. The other
dimensions must be less than 16 design-size units
in absolute value; thus, header [1] and param [1] are
the only fix word entries in the whole TFM file whose
first byte might be something besides 0 or 255.

header [2 . . . 11], if present, contains 40 bytes that iden-
tify the character coding scheme. The first byte,
which must be between 0 and 39, is the num-
ber of subsequent ASCII bytes actually relevant
in this string, which is intended to specify what
character-code-to-symbol convention is present in
the font. Examples are ASCII for standard
ASCII, TeX text for fonts like cmr10 and cmti9,
TeX math extension for cmex10, XEROX text for

Xerox fonts, GRAPHIC for special-purpose non-
alphabetic fonts, UNSPECIFIED for the default case
when there is no information. Parentheses should
not appear in this name. (Such a string is said to
be in BCPL format.)

header [12 . . . 16], if present, contains 20 bytes that name
the font family (e.g., CMR or HELVETICA), in BCPL
format. This field is also known as the “font iden-
tifier.”

header [17], if present, contains a first byte called the
seven bit safe flag , then two bytes that are ignored,
and a fourth byte called the face . If the value of
the fourth byte is less than 18, it has the following
interpretation as a “weight, slope, and expansion”:
Add 0 or 2 or 4 (for medium or bold or light) to
0 or 1 (for roman or italic) to 0 or 6 or 12 (for
regular or condensed or extended). For example, 13
is 0+1+12, so it represents medium italic extended.
A three-letter code (e.g., MIE) can be used for such
face data.

header [18 . . . whatever] might also be present; the
individual words are simply called header [18],
header [19], etc., at the moment.

Next comes the char info array, which contains one
char info word per character. Each char info word con-
tains six fields packed into four bytes as follows.

first byte width index (8 bits)

second byte height index (4 bits) times 16, plus
depth index (4 bits)

third byte italic index (6 bits) times 4, plus tag
(2 bits)

fourth byte remainder (8 bits)

The actual width of a character is width [width index],
in design-size units; this is a device for compressing in-
formation, since many characters have the same width.
Since it is quite common for many characters to have
the same height, depth, or italic correction, the TFM for-
mat imposes a limit of 16 different heights, 16 different
depths, and 64 different italic corrections.

Incidentally, the relation width [0] = height [0] =
depth [0] = italic [0] = 0 should always hold, so that an
index of zero implies a value of zero. The width index
should never be zero unless the character does not exist
in the font, since a character is valid if and only if it lies
between bc and ec and has a nonzero width index .

The tag field in a char info word has four values that
explain how to interpret the remainder field.

tag = 0 (no tag) means that remainder is unused.

tag = 1 (lig tag)
means that this character has a ligature/kerning
program starting at lig kern [remainder].

tag = 2 (list tag) means that this character is part of a
chain of characters of ascending sizes, and not the
largest in the chain. The remainder field gives the
character code of the next larger character.

tag = 3 (ext tag) means that this character code rep-
resents an extensible character, i.e., a character
that is built up of smaller pieces so that it can be
made arbitrarily large. The pieces are specified in
exten [remainder].

The lig kern array contains instructions in a simple
programming language that explains what to do for spe-
cial letter pairs. Each word is a lig kern command of
four bytes.

first byte skip byte , indicates that this is the final pro-
gram step if the byte is 128 or more, otherwise the
next step is obtained by skipping this number of
intervening steps.

second byte next char : “if next char follows the cur-
rent character, then perform the operation and
stop, otherwise continue.”

third byte op byte , indicates a ligature step if less
than 128, a kern step otherwise.

fourth byte remainder .

In a kern step, an additional space equal to
kern [256(op byte−128)+remainder] is inserted between
the current character and next char . This amount is of-
ten negative, so that the characters are brought closer
together by kerning; but it might be positive.

There are eight kinds of ligature steps, having op byte
codes 4a+2b+c where 0 ≤ a ≤ b+c and 0 ≤ b, c ≤ 1. The
character whose code is remainder is inserted between
the current character and next char ; then the current
character is deleted if b = 0, and next char is deleted if
c = 0; then we pass over a characters to reach the next
current character (which may have a ligature/kerning
program of its own).

Notice that if a = 0 and b = 1, the current character
is unchanged; if a = b and c = 1, the current character
is changed but the next character is unchanged.

If the very first instruction of the lig kern array has
skip byte = 255, the next char byte is the so-called right
boundary character of this font; the value of next char
need not lie between bc and ec . If the very last instruc-
tion of the lig kern array has skip byte = 255, there is
a special ligature/kerning program for a left boundary
character, beginning at location 256op byte+remainder .
The interpretation is that TEX puts implicit boundary
characters before and after each consecutive string of
characters from the same font. These implicit charac-
ters do not appear in the output, but they can affect
ligatures and kerning.

If the very first instruction of a character’s lig kern
program has skip byte > 128, the program actually be-
gins in location 256op byte + remainder . This feature

allows access to large lig kern arrays, because the first
instruction must otherwise appear in a location ≤ 255.

Any instruction with skip byte > 128 in the lig kern
array must have 256op byte + remainder < nl . If such
an instruction is encountered during normal program ex-
ecution, it denotes an unconditional halt; no ligature
command is performed.

Extensible characters are specified by an
extensible recipe , which consists of four bytes called top ,
mid , bot , and rep (in this order). These bytes are the
character codes of individual pieces used to build up a
large symbol. If top , mid , or bot are zero, they are not
present in the built-up result. For example, an extensi-
ble vertical line is like an extensible bracket, except that
the top and bottom pieces are missing.

The final portion of a TFM file is the param array, which
is another sequence of fix word values.

param [1] = slant is the amount of italic slant, which
is used to help position accents. For example,
slant = 0.25 means that when you go up one unit,
you also go 0.25 units to the right. The slant is a
pure number; it’s the only fix word other than the
design size itself that is not scaled by the design
size.

param [2] = space is the normal spacing between words
in text. Note that character "Ã" in the font need
not have anything to do with blank spaces.

param [3] = space stretch is the amount of glue stretch-
ing between words.

param [4] = space shrink is the amount of glue shrinking
between words.

param [5] = x height is the height of letters for which ac-
cents don’t have to be raised or lowered.

param [6] = quad is the size of one em in the font.

param [7] = extra space
is the amount added to param [2] at the ends of
sentences.

When the character coding scheme is TeX math

symbols, the font is supposed to have 15 additional pa-
rameters called num1 , num2 , num3 , denom1 , denom2 ,
sup1 , sup2 , sup3 , sub1 , sub2 , supdrop , subdrop ,
delim1 , delim2 , and axis height , respectively. When
the character coding scheme is TeX math extension,
the font is supposed to have six additional parame-
ters called default rule thickness and big op spacing1
through big op spacing5 .

