
 Preliminary

 Palm™ File Format
Specification

Document Number 3008-002
Print Date January 17, 2000

Document Number 3008-002
modified 1/17/00 Preliminary

CONTRIBUTORS

Written by Christopher Bey
Engineering contributions by David Fedor

Copyright © 1996 - 2000, Palm Computing, Inc. All rights reserved. This documentation may be printed
and copied solely for use in developing products for Palm OS software. In addition, two (2) copies of this
documentation may be made for archival and backup purposes. Except for the foregoing, no part of this
documentation may be reproduced or transmitted in any form or by any means or used to make any de-
rivative work (such as translation, transformation or adaptation) without express written consent from
Palm Computing.

Palm Computing reserves the right to revise this documentation and to make changes in content from time
to time without obligation on the part of Palm Computing to provide notification of such revision or
changes. PALM COMPUTING MAKES NO REPRESENTATIONS OR WARRANTIES THAT THE DOCU-
MENTATION IS FREE OF ERRORS OR THAT THE DOCUMENTATION IS SUITABLE FOR YOUR USE.
THE DOCUMENTATION IS PROVIDED ON AN “AS IS” BASIS. PALM COMPUTING MAKES NO WAR-
RANTIES, TERMS OR CONDITIONS, EXPRESS OR IMPLIED, EITHER IN FACT OR BY OPERATION OF
LAW, STATUTORY OR OTHERWISE, INCLUDING WARRANTIES, TERMS, OR CONDITIONS OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND SATISFACTORY QUALITY.

TO THE FULL EXTENT ALLOWED BY LAW, PALM COMPUTING ALSO EXCLUDES FOR ITSELF AND
ITS SUPPLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR TORT (INCLUDING NEGLI-
GENCE), FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL, OR PUNITIVE DAM-
AGES OF ANY KIND, OR FOR LOSS OF REVENUE OR PROFITS, LOSS OF BUSINESS, LOSS OF
INFORMATION OR DATA, OR OTHER FINANCIAL LOSS ARISING OUT OF OR IN CONNECTION
WITH THIS DOCUMENTATION, EVEN IF PALM COMPUTING HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES.

Palm Computing, Palm OS, Graffiti, HotSync, and Palm Modem are registered trademarks, and Palm III,
Palm IIIe, Palm IIIx, Palm V, Palm Vx, Palm VII, Palm, More connected., Simply Palm, the Palm Comput-
ing platform logo, Palm III logo, Palm IIIx logo, Palm V logo, and HotSync logo are trademarks of Palm
Computing, Inc. or its subsidiaries. All other product and brand names may be trademarks or registered
trademarks of their respective owners.

IF THIS DOCUMENTATION IS PROVIDED ON A COMPACT DISK, THE OTHER SOFTWARE AND
DOCUMENTATION ON THE COMPACT DISK ARE SUBJECT TO THE LICENSE AGREEMENT AC-
COMPANYING THE COMPACT DISK.

Palm Computing, Inc.
5400 Bayfront Plaza
Santa Clara, CA 95052
USA

www.palm.com/devzone

Palm File Format Specification
Document Number 3008-002
January 17, 2000

Palm File Format Specification 3
 Prelliminary modified 1/17/00

Table of Contents
 About This Document 7

1 PQA Database Format 1
Overview . 1
PQA Database Format. 2
PDB Header for a PQA 3
Record List in the PDB Header 7
PQA appInfo Block . 8
Web Content Record 11

2 Content And Compression Types 17
cmlContentTypeTextCml 18

Plain Text . 18
cmlContentTypeImagePalmOS 18
cmlCompressionTypeNone and cmlCompressionTypeBitPacked 18

3 PQA Encoding Format 21
Overview . 21
Differences From HTML 23
Bit Packed Compression 24

Bit Packed Compression Encoding 28
ASCII Text Encoding 28
Tag Encoding . 28
Numeric Parameter Value Encoding 29
Image Compression 29

Compact Data Structure Notation 29
Compact Data Structure Types 30

UIntV . 30
IntV . 31
Uint16V . 31
Int16V . 31
Uint8V . 31

4 Palm File Format Specification
modified 1/17/00 Prelliminary

Int8V . 32
PQA Tags . 32

Text Encoding Tags 33
The Tag Data Type 35
Text & TextZ Types 35

TextZ Type . 36
Unpacked Notation . 37

Translation of Bit-Packed to Uncompressed Data 38
Example Translation 40

Data Termination . 41
Tag Definitions . 41

Background Attributes 41
cmlTagBGColor . 41
Text Attributes . 42
cmlTagTextColor . 42
cmlTagLinkColor. 42
cmlTagTextSize . 43
cmlTagTextBold . 44
cmlTagTextItalic . 44
cmlTagTextStrike . 44
cmlTagTextMono . 45
cmlTagTextSup. 45
cmlTagTextSub. 46
cmlTagTextUnderline 46
cmlTag8BitEncoding 46
cmlTagH1, cmlTagH2, cmlTagH3,

cmlTagH4, cmlTagH5, cmlTagH6 47
cmlTagHistoryListText 47
Paragraph Attributes 48
cmlTagParagraphAlign 48
cmlTagBlockQuote 48
cmlTagAddress . 49
Lists . 49
cmlTagListOrdered 49
cmlTagListUnordered 50

Palm File Format Specification 5
 Prelliminary modified 1/17/00

cmlTagListDefinition 51
cmlTagListItemNormal 52
cmlTagListItemCustom 52
cmlTagListItemTerm 54
cmlTagListItemDefinition 54
Forms . 54
cmlTagForm . 54
cmlTagInputTextLine 57
cmlTagInputPassword 58
cmlTagInputRadio 59
cmlTagInputCheckBox 60
cmlTagInputSubmit 61
cmlTagInputReset 62
cmlTagInputHidden 63
cmlTagInputTextArea 63
cmlTagSelect. 64
cmlTagSelectItemNormal 65
cmlTagSelectItemCustom 65
cmlTagInputDatePicker 66
cmlTagInputTimePicker 67
Tables. 67
cmlTagTable . 67
cmlTagCaption. 69
cmlTagTableRow . 70
cmlTagTableData . 71
cmlTagTableHeader 72
Hyperlinks . 74
cmlTagHyperlink. 74
cmlTagAnchor . 78
Graphical Elements 78
cmlTagImage . 78
cmlTagHorizontalRule 80
Other Elements . 82
cmlTagClear . 82
cmlTagCMLEnd . 83

6 Palm File Format Specification
modified 1/17/00 Prelliminary

 Index 85

About This
Document
This document contains information about the Palm Query
Application (PQA) File Format. Information about Palm Database
file (PDBs) formats and Palm Resource (PRCs) file formats will be
added to this document within a month after this release and posted
to the Palm website:

http://www.palm.com/devzone/docs.html

About This Document

8 Palm File Format Specification
modified 1/17/00 Preliminary

1
PQA Database
Format

Overview
A Palm Query Application (PQA) is a Palm Database (PDB)
containing world-wide web content. On the Palm device all PQAs
are associated through the Launcher with the Clipper web-clipping
viewer. When a user opens a PQA file for viewing, the Launcher
starts Clipper, which in turn displays the contents of the selected
PQA.

A PQA database may contain one or more PDB records, which in
turn contain the actual web content. Clipper displays each record as
a “page” in the sense that a traditional web browser displays an
HTML file. Records contain either hypertext markup language
(HTML) encoded into simplified PQA format, or image content
encoded as Palm bitmap data. The data is also compressed. The
content in a record may contain links to other records in the same
PQA, to other PQAs or applications, and to HTML pages on a
remote server.

This chapter describes the format and contents of a PQA.

The version described herein includes DatabaseHdrType version
1 and PQA header version 3.

NOTE: All structure elements in all headers are byte-packed in
network (big-endian) order.

The offsets listed in the structure diagrams are in hexadecimal.

PQA Database Format
PQA Database Format

2 Palm File Format Specification
modified 1/17/00 Preliminary

PQA Database Format
The format of a PQA database is shown in Figure 1.1. Note that this
is a normal Palm database with certain constraints unique to a PQA,
as described throughout this chapter.

Figure 1.1 PQA Database Format

A PQA contains the following parts:

• A standard PDB header (DatabaseHdrType). See “PDB
Header for a PQA” on page 3.

• A single list (RecordListType) of records
(RecordEntryType) that correspond to individual web
content records. See “Record List in the PDB Header” on
page 7.

• Two NULL bytes separating the end of the record entry list
from the start of the appInfo block. This is an artifact of pre-
existing PDB support in the Palm OS®, and is required by the
HotSync® mechanism.

• An appInfo block, containing a PQA header. See “PQA
appInfo Block” on page 8.

PQA Database Format
PDB Header for a PQA

Palm File Format Specification 3
 Preliminary modified 1/17/00

• One or more individual resource blocks (records) containing
displayable web content. Each record contains a header
(PqfWebDocRecordType) and web content (HTML data
encoded into the PQA format, or graphic data). See “Web
Content Record” on page 11.

PDB Header for a PQA
The PDB header in a PQA is a standard DatabaseHdrType
structure. The format is shown in Figure 1.2.

PQA Database Format
PDB Header for a PQA

4 Palm File Format Specification
modified 1/17/00 Preliminary

Figure 1.2 PQA Header

A Palm OS application should use Palm OS functions for extracting
data from particular records in the database and should have little
need for details concerning the PDB structure. However, there are
four elements in the PDB header that contain PQA specific data:
name, attributes , type , and creator .

PQA Database Format
PDB Header for a PQA

Palm File Format Specification 5
 Preliminary modified 1/17/00

Field Descriptions

name A string containing up to 31 bytes of the name and
extension (filname.ext format) of the PQA file, which is
also the name of the database on the Palm device. (This file
is the one saved to disk by the Query Application Builder
application on the content development machine.) This is
the file name used to back up the PDB during the HotSync
process to a desktop computer. The name string preserves
the case of the original file name.
This string is null-terminated; there are 31 characters
available for the actual name.

attributes A Word of flags; standard PDB attributes. For all PQAs:
attributes = dmHdrAttrBackup |
dmHdrAttrLaunchableData
The dmHdrAttrBackup (0x0008) attribute sets the backup
bit. The dmHdrAttrLaunchableData (0x0200) attribute
designates this PDB as one that can be launched by an
application with the same creator, which is how PQAs are
associated with the Clipper application (see creator
below).

version A Word; the version of the database layout. Currently 1 for
the layout described here.

creationDate A DWord; the creation date of the database. The timea
when the PQA was written to disk on the content
development machine.

modificationDate A DWord; the time1 of the last modification of the PQA.
Initially set equal to the value of creationDate .

lastBackupDate A DWord; the time1 the PQA was last backed up. Initially
set to the value 2.

modificationNumber A DWord; the modification number of the database.
Initially set to 0.

PQA Database Format
PDB Header for a PQA

6 Palm File Format Specification
modified 1/17/00 Preliminary

appInfoID A LocalID (DWord); the offset from the beginning of the
PDB header data to the start of the application-specific
appInfo block, identifying the location of the PQA header.
For a given PQA, this offset is equal to:
sizeof(DatabaseHdrType) - 2 + numRecords *
sizeof(RecordEntryType)
Subtract two to allow for the two dummy bytes in the
record entry list, recordList (see the following section,
Record List in the PDB Header).

sortInfoID A LocalID (DWord); offset from the beginning of the PDB
header data to the start of an application-specific sortInfo
block (PDB sorting information). Unused in PQAs; always
0.

type A DWord; the PDB type identifier. Always 'pqa '
(0x70716120).

creator A DWord; the PDB creator identifier. Always 'clpr'
(0x636C7072).
This, together with the dmHdrAttrLaunchableData
attribute, identifies PQAs as databases to be launched by
the Clipper application.

uniqueIDSeed A DWord; normally used to generate unique identifiers on
the Palm device. Unused in PQAs; always 0.

recordList A RecordListType ; a single record list. For details, see
the following section, Record List in the PDB Header.
Normally, a PDB (not a PQA) recordList field may
contain more than one list (RecordListType) of record
entries. A PQA PDB header always contains a single list.

a. For creationDate , modificationDate , and lastBackupDate , the value is as given by the
standard C run-time routine time() added to a constant offset (decimal 2082844800) to produce
a Palm-device standard time value. The value is the number of seconds elapsed since midnight
(00:00:00), January 1, 1970, coordinated universal time, according to the system clock. A Palm
device standard time value is the number of seconds elapsed since 1/1/1904.

PQA Database Format
Record List in the PDB Header

Palm File Format Specification 7
 Preliminary modified 1/17/00

Record List in the PDB Header
A PDB header in a PQA file contains a standard record list, shown
in Figure 1.3.

There is always a single record list in a PQA PDB header. The list
consists of a header (a RecordListType) followed by 0 or more
record entries (of type RecordEntryType).

Figure 1.3 PQA Record List

The fields in the RecordListType header are described here:

Field Descriptions

nextRecordListID A LocalID (DWord); the local offset of the
next list. In the PDB header of a PQA,
always 0 (i.e. a PQA PDB header always
contains only a single record entry list).

numRecords A Word; the number of record entries in
this list. Also, by definition, the number
of web record resources contained in the
PQA.

unused bytes Two pad bytes set to 0; not used.

PQA Database Format
PQA appInfo Block

8 Palm File Format Specification
modified 1/17/00 Preliminary

Each record list entry (RecordEntryType) in the PDB header
identifies a single web content record in the PQA. Here are the fields
in each record list entry:

Field Descriptions

PQA appInfo Block
Each PQA’s PDB header (described previously) is followed by a
block of application-specific data.

The format is shown in Figure 1.4. The field names followed by
asterisks (*) identify variable-length fields of bytes, padded, if
necessary, to a word boundary.

localChunkID A LocalID (DWord); the offset from the
top of the PDB to the start of the web
content record data for this entry. This is
the offset to the start of the web content
records’s header
(PqfWebDocRecordType).

attributes One byte; always 0 in a PQA.

uniqueID Three bytes; always 0 in a PQA.

PQA Database Format
PQA appInfo Block

Palm File Format Specification 9
 Preliminary modified 1/17/00

Figure 1.4 PQA appInfo Block

Field Descriptions

signature A DWord; must be 'lnch' (0x6C6E6368).

hdrVersion A Word; the version of this PQA header. Currently 3.

encVersion A Word; for PQAs that contain HTML data encoded into the
PQA format, the version of the encoding. All web content
records within a given PQA are taken to have the same
encoding version.

verStrWords A Word; the length of the verStr (version string) that follows,
in 16-bit words, including any pad byte at the end.

PQA Database Format
PQA appInfo Block

10 Palm File Format Specification
modified 1/17/00 Preliminary

verStr A sequence of (verStrWords * 2) Bytes; a null-terminated
version string that Clipper shows. This is the version string for
the PQA itself (i.e. the version of this web content).
If the value of verStrWords is zero, the verStr field will
contain no bytes.
The end of this sequence of bytes must be word-aligned. If the
size of the data (including the string’s null terminator) is an odd
number of bytes, the data must be followed by a null pad byte.

pqaTitleWords A Word; the length of the pqaTitleStr (PQA Launcher-
visible title string) that follows, in 16-bit words, including any
pad byte at the end.

pqaTitleStr A sequence of (pqaTitleWords * 2) Bytes; a null-terminated
title string that the Launcher shows for this PQA’s icon. This is
the title string for the PQA itself; not the title string included in
the original HTML index file’s source for the web page’s title,
shown by Clipper.
If the value of pqaTitleWords is zero, the pqaTitleStr field
will contain no bytes.
The end of this sequence of bytes must be word-aligned. If the
size of the data (including the string’s null terminator) is an odd
number of bytes, the data must be followed by a null pad byte.

iconWords A Word; the length of the bitmap data that follows, in 16-bit
words, including any pad byte at the end.

icon A sequence of (iconWords * 2) Bytes; a Palm bitmap
(BitmapType and associated bitmap data). This is the large
icon that appears on the device for this PQA.a

If the value of iconWords is zero, the icon field will contain no
bytes.
The end of this sequence of bytes must be word-aligned. If the
size of the data is an odd number of bytes, the data must be
followed by a null pad byte.

PQA Database Format
Web Content Record

Palm File Format Specification 11
 Preliminary modified 1/17/00

Web Content Record
Following the appInfo block in a PQA is a sequence of web content
records; one for each record list entry in the PDB header record list.
Each web content record begins on a word boundary, and contains a
header (PqfWebDocRecordType) followed by the content’s
original URL and the content itself (that is, HTML data encoded into
the PQA format, or graphic data).

The layout of a web content record is shown in Figure 1.5.

smIconWords A Word; the length of the bitmap that follows, in 16-bit words,
including any pad byte at the end.

smIcon A sequence of (smIconWords * 2) Bytes; a Palm bitmap
(BitmapType and associated bitmap data). This is the small
icon that appears on the device for this PQA.*

If the value of smIconWords is zero, the smIcon field will
contain no bytes.
The end of this sequence of bytes must be word-aligned. If the
size of the data is an odd number of bytes, the data must be
followed by a null pad byte.

a.The icon sizes are 32 by 32 for the large icon and 15 by 9 for the small icon. There
is no color table present in these bitmaps. Currently, images converted to Palm
bitmaps for use as icons have their color depth reduced to 1 bit per pixel.

PQA Database Format
Web Content Record

12 Palm File Format Specification
modified 1/17/00 Preliminary

Figure 1.5 Web Content Record

PQA Database Format
Web Content Record

Palm File Format Specification 13
 Preliminary modified 1/17/00

Field Descriptions

urlOffset A DWord; the offset, in number of bytes, from the top of
this PqfWebDocRecordType header to the start of the
URL for this web content resource.
For this version of the web content record, this field’s
value is always 0x14. This seemingly unnecessary field is
included in this version of the record format for historical
reasons.

urlLength A Word; the length of the URL string, in bytes. This is
simply the size of the URL string itself and counts neither
a null terminator nor any pad byte following the string
data.

dataOffset A DWord; the offset, in number of bytes, from the top of
this PqfWebDocRecordType to the start of the data for
this web content resource.

dataLength A Word; the length of the data, in bytes.

contentType A Byte; a code for the type of content, defined in
CMLConst.h and described in Chapter 2, “Content And
Compression Types.” The contentType indicates the
type of resource encoded in this record, e.g. HTML, text,
JPEG, or GIF. The content type is determined either from
a MIME string passed from a server or by the filename
extension of the original resource. Valid content types
include:
cmlContentTypeTextPlain
cmlContentTypeTextHTML
cmlContentTypeImageGIF
cmlContentTypeImageJPEG
cmlContentTypeTextCml
cmlContentTypeImagePalmOS

Version 1 of the Palm Query Application Builder
application encodes any valid image resource (i.e. GIF or
JPEG) into cmlContentTypeImagePalmOS , and all
other resources as cmlContentTypeTextCml . Other
content types are provided for future use.

PQA Database Format
Web Content Record

14 Palm File Format Specification
modified 1/17/00 Preliminary

compressionType A Byte indicating the type of compression of the content,
defined in CMLConst.h . Valid types include:
cmlCompressionTypeNone
cmlCompressionTypeBitPacked
cmlCompressionTypeLZ77

Type cmlCompressionTypeNone is loosely termed
“raw” and is described in “Unpacked Notation” on
page 37. Type cmlCompressionTypeBitPacked is the
standard PQA compression type, described in “Bit
Packed Compression” on page 24. Type
cmlCompressionTypeLZ77 is reserved for future use.

uncompressedDataSiz
e

A DWord; the uncompressed size, in bytes, of the web
content. This field contains the size of the resource data
in “raw” (cmlCompressionTypeNone) form, before
compression is applied to produce data using
cmlCompressionTypeBitPacked compression.
Note that in test code, in a record with
compressionType set to cmlCompressionTypeNone ,
the value of the field uncompressedDataSize equals
the value of the field dataLength . If the web content is
an image, this field contains the size of the Palm OS
bitmap data before compression.

flags A Byte; currently unused. Should be zero.

reserved A Byte; currently unused. Should be zero.

PQA Database Format
Web Content Record

Palm File Format Specification 15
 Preliminary modified 1/17/00

URL string The URL string follows the end of the
PqfWebDocRecordType structure. The string contains
the filename of the individual resource as it existed on
the development system when the PQA was built (for
example, “palm.htm”).
The URL string may be followed by a zero pad byte (not
a null-terminator), if necessary, to align the string data on
a word boundary.

Web document data Document data begins on a word boundary following
the end of the URL string. Version 1 of the Palm Query
Application Builder application encodes any valid image
resource (i.e. GIF or JPEG) into
cmlContentTypeImagePalmOS , and all other
resources as cmlContentTypeTextCml .
A cmlContentTypeImagePalmOS resource is a
standard Palm bitmap, compressed using standard Palm
bitmap image compression.
A cmlContentTypeTextCml resource is text or HTML
data encoded in the PQA format, described in Chapter 3,
“PQA Encoding Format.” The Palm Query Application
Builder application builds cmlContentTypeTextCml
resources that are compressed using
cmlCompressionTypeBitPacked compression.

PQA Database Format
Web Content Record

16 Palm File Format Specification
modified 1/17/00 Preliminary

2
Content And
Compression Types
The Palm web clipping application (Clipper) displays web content
on a Palm VII™ device. This content arrives on the device either
within a Palm query application (PQA) database or as part of a
transmission from the Palm Web Clipping Proxy server.

The container identifies the type of content it contains. The valid
type identifiers are:

cmlContentTypeTextPlain 0
cmlContentTypeTextHTML 1
cmlContentTypeImageGIF 2
cmlContentTypeImageJPEG 3
cmlContentTypeTextCml 4
cmlContentTypeImagePalmOS 5

The current version of the Clipper web clipping application
processes only content identified with either content type
cmlContentTypeTextCml or cmlContentTypeImagePalmOS .

A PQA or proxy server response stream also identifies the
compression type applied to the content. The valid compression
type identifiers are:

cmlCompressionTypeNone 0
cmlCompressionTypeBitPacked 1
cmlCompressionTypeLZ77 2

The current version of the Clipper web clipping application
processes only content identified with either compression type
cmlCompressionTypeNone or
cmlCompressionTypeBitPacked .

Content And Compression Types
cmlContentTypeTextCml

18 Palm File Format Specification
modified 1/17/00 Preliminary

cmlContentTypeTextCml
The Palm PQA data format encoder converts resources with MIME
type text/html to content with type cmlContentTypeTextCml .
The format of the data is specified in Chapter 3, “PQA Encoding
Format.”

Plain Text
The data format encoder interprets resources with MIME type text/
plain, as well as any content that is not identified as text/html,
image/gif, or image/jpeg data, as “plain text” content. The encoder
processes the source content and produces plain text consisting only
of characters that fall within the defined ANSI text character set
(0x20 through 0x7e, 0x82 through 0x8c, 0x91 through 0x9e, and 0xa1
through 0xff) together with ASCII tab (0x09), linebreak (0x0a), and
carriage return (0x0d) codes. The encoder identifies this content as
type cmlContentTypeTextCml since that is the only non-image
content type that Clipper handles.

cmlContentTypeImagePalmOS
Content type cmlContentTypeImagePalmOS is standard Palm
OS® bitmap image data, which may be compressed according to the
Palm OS bitmap standard. The current version of the Palm PQA
data format encoder, used by both the Palm Query Application
Builder application and by the Palm Web Clipping Proxy server,
converts resources with MIME content types image/gif and image/
jpeg into compressed Palm OS bitmaps.

See BitmapType and BitmapFlagsType in the header file
WindowNew.h for information on the Palm OS bitmap format.

cmlCompressionTypeNone and
cmlCompressionTypeBitPacked

Type cmlCompressionTypeNone is an intermediate form; the
Query Application Builder and Palm Web Clipping Proxy server
always generate cmlCompressionTypeBitPacked data.

Content And Compression Types
cmlCompressionTypeNone and cmlCompressionTypeBitPacked

Palm File Format Specification 19
 Preliminary modified 1/17/00

For more information, see the sections “Bit Packed Compression”
on page 24 and “Unpacked Notation” on page 37.

Content And Compression Types
cmlCompressionTypeNone and cmlCompressionTypeBitPacked

20 Palm File Format Specification
modified 1/17/00 Preliminary

3
PQA Encoding
Format
This chapter describes the PQA data encoding format.

The Clipper web clipping display application on the Palm VII
device, the Palm Query Application Builder application, and the
Palm Web Clipping Proxy servers all work with a data format that is
a binary translation of HTML source data, known as the PQA data
format. Furthermore, the Query Application Builder application
and proxy servers produce data that is compressed with a Palm-
proprietary “bit-packed” scheme.

This chapter describes the PQA data encoding format and the
associated bit-packed compression scheme, and includes the
specifications for both. Note that when it's necessary to discuss
unpacked data, we'll refer to the data as raw, unpacked or
uncompressed.

This document describes version 1 of the PQA encoding and
compressing scheme. Future versions may include additional
features and support more content types.

Overview
PQA data is a stream of text and image data with embedded
formatting tags. PQA data is generated from HTML data; PQA tags
embedded in the data correspond to HTML tags. For example, some
common HTML tags (BR, P, DIV) are mapped to single linebreak
characters; other PQA tags and their parameters are embedded as
binary data rather than ASCII characters (see the section “Unpacked
Notation” on page 37).

Given some HTML input, a PQA data format encoder transforms
HTML tags to their PQA representations, ignoring unsupported
HTML tags, and converts images to Palm OS® bitmaps to be

PQA Encoding Format
Overview

22 Palm File Formats Specification
modified 1/17/00 Preliminary

embedded in the PQA output. (Note that the current version of the
PQA data format encoder used by the Palm Query Application
Builder and the Palm Web Clipping Proxy server accepts and
converts only GIF and JFIF images.) The result is uncompressed
PQA format data.

After transforming the HTML source to a PQA representation, the
encoder may compress the data using the bit-packed compression
scheme.

Here is an example translation from HTML to bit-packed PQA
format. Given this original HTML content:

<html>
<head>

<title>Example</title>
</head>
<body>
Body text
</body>
</html>

A byte stream containing unpacked PQA data appears as follows (in
hexadecimal):

A bit stream containing the equivalent bit-packed data appears as
follows:

Or, in hexadecimal, it appears like this:

45 78 61 6D 70 6C 65 00 42 6F 64 79 20 74 65 78 74 01 71

 E x a m p l e \0 B o d y sp t e x t cmlEnd

000100100010111101001101001010101100010101000000000100100
001010100010011111000101110010101011101110010000101110001

12 2F 4D 2A C5 40 12 15 13 E2 E5 5D C8 5C 40

PQA Encoding Format
Differences From HTML

Palm File Formats Specification 23
 Preliminary modified 1/17/00

Encoding the HTML as bit-packed PQA data results in a compact
representation relative to the size of the original. (Note that the
hexadecimal representation above includes zero bits not part of the
PQA bit stream, which actually ends with the last “on” (1) digit in
the byte with the value 40h.)

Here is a break-out of the data elements for comparison:

This specification describes how HTML elements are encoded and
compressed into PQA format to produce a bit stream like the one
shown here.

Differences From HTML
The major emphasis of the PQA format is that it is optimized for
size, in keeping with the overall goal for the Palm VII device of
minimizing the number of bytes transmitted over the air. The PQA

 00010 <single character escape>
01000101 E
 11101 x
 00110 a
 10010 m
 10101 p
 10001 l
 01010 e
 00000 <title string textz null terminator>
 00010 <single character escape>
01000010 B
 10100 o
 01001 d
 11110 y
 00101 <space>
 11001 t
 01010 e
 11101 x
 11001 t
 00001 <start of tag>
01110001 cmlTagCMLEnd

PQA Encoding Format
Bit Packed Compression

24 Palm File Formats Specification
modified 1/17/00 Preliminary

format consists of binary data. Readability and flexibility are
compromised for compactness.

One major design difference between HTML and PQA format is that
PQA format is not designed as a content creation language. The
PQA format is not intended to be used to actively mark-up web
content. It is merely a temporary format used to represent content as
it is being transferred between a server and a client. As such, it is
always algorithmically generated from HTML source, a process
similar to object code being generated from a compilation of source
code.

Another important difference between PQA format and HTML is
that white space and line breaks in the PQA format text are
significant. That is, the equivalent of the HTML line break tag
(
) is not required in PQA format since line breaks are
embedded directly into the text as linebreak characters.

Lastly, unlike HTML, the PQA data format specifies no
identification scheme of any kind; successful data transfer and
handling depends entirely upon context. There is no header or
magic number at the start of a stream of PQA data, unless such
identification is part of some enclosing transport mechanism for the
data. For example, PQA data is expected in a response from the
Palm Web Clipping Proxy server and within a Palm Query
Application resource, and is identified by the appropriate headers in
each case.

For details on the HTML tags and attributes that are supported in
the Palm system, refer to Appendix A of the Web Clipping Developer’s
Guide.

Bit Packed Compression
In its raw form, unpacked PQA data
(cmlCompressionTypeNone) is an encoded form of HTML,
smaller in size than the original content. Of course, a stream of
unpacked encoded data can be compressed further. Although
unpacked PQA data could be compressed using any standard
method, for historical reasons the current versions of the Palm
Query Application Builder application, the Palm Web Clipping
Proxy servers, and the Clipper web clipping display application, all

PQA Encoding Format
Bit Packed Compression

Palm File Formats Specification 25
 Preliminary modified 1/17/00

work with PQA data that has been compressed using a proprietary
compression scheme called “bit-packed”
(cmlCompressionTypeBitPacked).

Palm software uses the bit-packed scheme in the hopes of reducing
the size of the web content transmitted over the air. This is in
keeping with one of the primary goals of the Palm VII device: to
minimize the number of bytes transmitted, and thus to minimize
data transmission charges.

The fundamental idea behind bit-packed compression is simply to
map single- or multiple-byte data elements in an unpacked PQA
data stream to data elements represented by fewer bits in a bit
stream.

A bit-packed PQA data stream is by default a 5-bit character text
stream. That is, until a special character (see below) appears in the
stream, each sequence of 5 bits is assumed to represent a single text
character. Table 3.1 lists the possible 5-bit characters.

Table 3.1 Bit-Packed Encoding 5-bit Characters

The table columns have the following meanings:

Value Special Reset Description

0 Yes Yes EndTag character (cmlCharEnd). Used to end a
TextZ type and certain tags.

1 Yes Yes StartTag character (cmlCharStart), followed by
an 8-bit Tag ID

2 Yes No Single character escape (cmlCharEsc), followed by
a single ASCII character

3 No No ASCII Formfeed (0x0c), (cmlCharFormFeed)

4 No No ASCII Carriage return (0x0d),
(cmlCharLineBreak)

5 No No ASCII Space (0x20), (cmlCharSpace)

6-31 No No ASCII lowercase letters: a through z (0x61 through
0x7a)

PQA Encoding Format
Bit Packed Compression

26 Palm File Formats Specification
modified 1/17/00 Preliminary

• Value is the 5-bit numeric value.

• Special indicates whether or not the value is an encoding
escape or text. As described under “cmlTag8BitEncoding” on
page 46, an encoder may produce sections of output within
which text is encoded using 8 bits per character instead of 5
bits per character. Even in these sections with larger number
of bits per character, the decimal character values 0 through 2
always have special meaning.

• Reset indicates whether or not a decoder that is currently
processing a cmlTag8BitEncoding of 8-bit text characters
should reset to 5-bit mode when the decoder encounters a
“reset” character. (See “Tag Definitions” on page 41 for
details of the tag encodings.)

A bit-packing decompressor operates essentially in three modes:

• 5-bit character mode, in which each group of 5 bits of input is
interpreted as one of the bit-packed encoding characters.

• Single-character escape mode, in which the next 8 bits of
input is taken as a single character.

• Tag mode, in which the bits of input are interpreted
according to the tag encoding definitions given in this
specification (see the section “Tag Definitions” on page 41.)

Bit-packing provides a benefit when applied to input consisting of
lowercase ASCII text characters and HTML tags and attribute
values (including image data). In the case of lowercase characters,
each 8-bit character is translated into a 5-bit equivalent. In the case
of HTML tags, numeric tag attribute values may be compressed
with variable-length integer encoding. In the case of image data, the
standard Palm OS bitmap image compression scheme uses bit-
packing.

Conversely, bit-packing results in expansion when applied to non-
lowercase characters (e.g. uppercase and numeric characters). In this
case, any reduction of the data size of an HTML stream encoded as a
bit-packed PQA data stream is due to the PQA encoding itself.

Note that the 5-bit compressor used by the Palm Query Application
Builder and the Palm Web Clipping Proxy servers takes only ASCII
text or uncompressed PQA data as input. That compressor does not
directly interpret HTML tags and end-tags in the input, and also

PQA Encoding Format
Bit Packed Compression

Palm File Formats Specification 27
 Preliminary modified 1/17/00

generates bit-packed plain text only from plain ASCII text data or as
part of PQA data.

Following is an example of how a simple section of text would be
represented in PQA format. The text:

abc d
ef

would be represented as:

Bit[5] char = 6 // 'a'
Bit[5] char = 7 // 'b'
Bit[5] char = 8 // 'c'
Bit[5] char = 5 // ' '
Bit[5] char = 9 // 'd'
Bit[5] char = 4 // line break
Bit[5] char = 10 // 'e'
Bit[5] char = 11 // 'f'

which, as a binary bit stream is:

When the text encoding mode is 5 bit characters, the single character
escape (2), is always followed by an 8 bit ASCII character. This
single character escape then can be used to represent characters
which are not present in the 5-bit alphabet. For example, the text:

a Cow

would be represented in PQA format as the following sequence:

Bit[5] char = 6 // 'a'
Bit[5] char = 5 // ' '
Bit[5] char = 2 // single character escape
Bit[8] char = 67 // 'C'
Bit[5] char = 20 // 'o'
Bit[5] char = 28 // 'w'

where the 67 is the 8 bit sequence 01000011 which represents the
ASCII value for 'C' (67 decimal, 0x43 hexadecimal), and all other
characters are 5 bits long.

00110 00111 01000 00101 01001 00100 01010 01011

PQA Encoding Format
Bit Packed Compression

28 Palm File Formats Specification
modified 1/17/00 Preliminary

Multiple sequences of non-lower case alpha or international
characters can also be included in the stream by including the
appropriate text encoding tag in the stream followed by the 8 or 16
bit (unicode) character text string. Tags are described in the next
sections.

Bit Packed Compression Encoding
The bit-packed compression scheme uses four fundamental
encodings for each of ASCII text, HTML tags, numeric parameter
values of the tags, and images.

These four encodings are described in the following sections. ASCII,
tag, and numeric parameter value encodings are defined in the rest
of this specification.

ASCII Text Encoding

Lowercase ASCII text characters, the space character and the
linebreak character are mapped to corresponding 5-bit codes. All
other ASCII text characters are encoded either by a 5-bit single-
character escape code or within a tagged run of 8-bit ASCII
characters.

Tag Encoding

All HTML tags are encoded as:

• 5-bit “start tag” code

• 8-bit tag identifier

If the tag includes attributes, the encoding includes:

• Encoded tag parameters (using numeric parameter value and
ASCII text encodings)

If the tag encloses associated tag data, for example, a hyperlink tag
enclosing a link or an image tag specifying an image URL, the
encoding includes:

• Encoded tag data (using ASCII text encoding and image
compression)

If the tag requires an end tag, for example, a hyperlink tag's ,
the encoding includes:

PQA Encoding Format
Compact Data Structure Notation

Palm File Formats Specification 29
 Preliminary modified 1/17/00

• 5-bit “end tag” code

Numeric Parameter Value Encoding

Numeric HTML parameter values may be compressed by encoding
the numeric values as binary numbers. Further, the binary
representations may be further compressed using variable-length
integer representations, defined under “Compact Data Structure
Types” on page 30.

Image Compression

The encoder must convert all original source image data to Palm OS
bitmap data. A bit-packing compressor compresses all Palm OS
images in the data with standard Palm OS bitmap image
compression, which is somewhat akin to PICT image compression
on the Mac OS.

Compact Data Structure Notation
Throughout the rest of this document, PQA data is represented
using a notation similar to that used in the C language for
representing data structures. We'll call this notation Compact Data
Structure Notation (CDSN).

This notation describes PQA data elements with compression type
cmlCompressionTypeBitPacked .

The general form is:

<data type> <identifier> = <legal value>

For example, the notation for a three bit value:

Bit[3] aValue = 7

Note that <legal value> may be an identifier the value of which
is a legal value. Also, note that the values of Bit[5] arrays are
typically denoted by the numeric values of characters defined in bit-
packed encoding, and given as the code for that character (for
example, 6 for 'a', 0 for the end tag code, etc.).

Here's a longer example:

Bit enabled = 1
Bit[3] type = typeRound

PQA Encoding Format
Compact Data Structure Notation

30 Palm File Formats Specification
modified 1/17/00 Preliminary

Int16 length = 0x1234

The above structure represents the following sequence of 20 bits:

The first field, enabled , is a 1 bit field that has the value 1. The
second field, type , is a 3 bit field that has the value typeRound
which is a constant defined to be 2. The third field, length , is a 16-
bit integer with the value 0x1234.

Fields in CDSN are never padded to fall on word or byte
boundaries. That is, each field starts off on the next free bit after the
previous field. All multi-bit values are stored most-significant-bit
first.

Compact Data Structure Types
A number of primitive data types are used in Compact Data
Structure Notation. The basic ones are:

• Bit : a single bit

• UInt8 , Int8 : 8 bit unsigned and signed integers

• UInt16 , Int16 : 16 bit unsigned and signed integers

• UInt32 , Int32 : 32 bit unsigned and signed integers

Other important types include the variable length integer types:
UIntV and IntV . These can be anywhere from 1 to 36 bits in length,
depending on their value. The actual length can be determined by
looking at the first 1 to 4 bits.

Using the UIntV , an integer of value 0 can be represented with just 1
bit, values 1 through 7 would require 5 bits, values 8 through 63
would require 9 bits, etc.

The types UIntV , IntV , UInt16V , Int16V , Uint8V , and Int8V are
defined in the following sections.

UIntV

1 010 0001001000110100

0 The value 0

10 Bit[3] The values 0 through 7 (0x07)

PQA Encoding Format
Compact Data Structure Notation

Palm File Formats Specification 31
 Preliminary modified 1/17/00

IntV

Uint16V

Int16V

Uint8V

110 Bit[6] The values 0 through 63 (0x3F)

1110 Bit[16] The values 0 through 65535 (0xFFFF)

1111 Bit[32] The values 0 through 4,294,967,295
(0xFFFFFFFF)

0 The value 0

10 Bit[3] The values -4 through 3

110 Bit[6] The values -32 through 31

1110 Bit[16] The values -32768 through 32767

1111 Bit[32] The values -2,147,483,648 through
2,147,483,647

0 The value 0

10 Bit[3] The values 0 through 7 (0x07)

110 Bit[6] The values 0 through 63 (0x3F)

1110 Bit[16] The values 0 through 65535 (0xFFFF)

0 The value 0

10 Bit[3] The values -4 through 3

110 Bit[6] The values -32 through 31

1110 Bit[16] The values -32768 through 32767

0 The value 0

10 Bit[3] The values 0 through 7 (0x07)

PQA Encoding Format
PQA Tags

32 Palm File Formats Specification
modified 1/17/00 Preliminary

Int8V

PQA Tags
The tag start character (1) is included in a data stream to indicate the
presence of a PQA tag. It is always followed by an 8-bit Tag ID
structure, and optionally followed by other variable length bit
fields, depending on the specific tag. The 8-bit Tag ID structure can
have a value of 0 through 255 (0 through 0xFF).

Different tags have different functions. Some tags are always
followed by other variable length bit fields which specify
parameters for that particular tag function. Other tags have no
parameters at all. In any case, because the tag start character is a
reset character, the text encoding mode is always set back to 5-bit
characters whenever a tag is encountered (unless the tag specifically
changes the text encoding mode).

This specification describes PQA data elements with their bit-
packed representations.

For example, the tag cmlTagTextBold is used to turn on bold
formatting. It has no parameters. The following text:

a cow

would be represented in PQA data format as:

Bit[5] char = 6 // 'a'
Bit[5] char = 5 // ' '
Bit[5] char = 1 // tag escape character
Bit[8] tagID = cmlTagTextBold // bold constant
Bit[5] char = 8 // 'c'

110 Bit[6] The values 0 through 63 (0x3F)

1110 Bit[16] The values 0 through 65535 (0xFFFF)

0 The value 0

10 Bit[3] The values -4 through 3

110 Bit[6] The values -32 through 31

1110 Bit[16] The values -32768 through 32767

PQA Encoding Format
PQA Tags

Palm File Formats Specification 33
 Preliminary modified 1/17/00

Bit[5] char = 20 // 'o'
Bit[5] char = 28 // 'w'

An example of a tag which has parameters is the cmlTagTextSize
tag. This tag is always followed by a UIntV specifying the actual
text size to use. For example, the following text:

a dog

would be represented in PQA format as:

Bit[5] char = 6 // 'a'
Bit[5] char = 5 // ' '
Bit[5] char = 1 // tag escape character
Bit[8] tagID = cmlTagTextSize // size constant
Bit[3] size = 4
Bit[5] char = 9 // 'd'
Bit[5] char = 20 // 'o'
Bit[5] char = 12 // 'g'

Text Encoding Tags
Some PQA tags are used to include strings of text that cannot be
encoded as 5-bit characters. Conceptually, text encoding tags are
merely tags that have a variable number of parameters following
them, where each “parameter” is another character in the text
stream. The sequence of “parameters” ends as soon as a reset
character is encountered (the cmlCharEnd or cmlCharStart
character).

For example, the cmlTag8BitEncoding tag indicates a string of 8
bit characters follows. The string of 8 bit characters is assumed to
continue in the stream until a reset character is encountered.
However, because the stream is now built up of 8 bit characters, all
special characters (which includes the reset characters and single
character escape) are also now 8 bits long. For example, the
cmlCharEnd character becomes the 8 bit sequence 0b00000000
and the cmlCharStart character becomes the 8 bit sequence
0b00000001 .

In all cases of alternate text encodings, as soon as a reset character (0
or 1 decimal) is encountered in the stream, the text mode is switched
back to 5 bit characters.

PQA Encoding Format
PQA Tags

34 Palm File Formats Specification
modified 1/17/00 Preliminary

The following is an example of how the cmlTag8BitEncoding tag
is used. The text:

a BIG dog

would be represented in PQA format as:

Bit[5] char = 6 // 'a'
Bit[5] char = 5 // ' '
Bit[5] char = 1 // tag escape character
Bit[8] tagID = cmlTag8BitEncoding
Bit[8] char = 'B' // 'B'
Bit[8] char = 'I' // 'I'
Bit[8] char = 'G' // 'G'
Bit[8] char = 0 // cmlCharEnd, switches text
 // encoding back to 5-bit mode
Bit[5] char = 9 // 'd'
Bit[5] char = 20 // 'o'
Bit[5] char = 12 // 'g'

An important thing to note is the interaction of alternate text
encoding sections with the cmlCharEnd character. Besides being
used as a way to reset the text encoding mode, the cmlCharEnd
character is sometimes used to separate two elements or to indicate
the end of a block level element.

For example, when a list needs to be represented in PQA format, the
list items are separated from each other by the cmlCharEnd
character. In these instances, if a list item was represented using 8-
bit encoded text, there would be two cmlCharEnd characters in a
row in the stream. The first cmlCharEnd character, needed to end
the 8-bit encoded text, would be 8 bits long. Then, to indicate the
actual start of another list item, a 5-bit cmlCharEnd character
would be placed in the stream.

PQA Encoding Format
PQA Tags

Palm File Formats Specification 35
 Preliminary modified 1/17/00

NOTE: Since there is a fixed amount of overhead associated
with adding a cmlCharStart , cmlTag8BitEncoding , and
cmlCharEnd to a run of characters, the Query Application Builder
application and the Palm Web Clipping Proxy servers do not
always encode consecutive runs of uppercase characters as
eight-bit encodings. Runs of uppercase characters of length four
or less are encoded as sequences of single character escapes.
Runs of length five or more are encoded as 8-bit encodings.

The Tag Data Type
Because the sequence of the tag escape character followed by a Tag
ID structure is used so often in the documentation, it is given its
own data type. It is defined as:

Tag tagID :

Char cmlCharStart = 1
Bit[8] tagID

Text & TextZ Types
Another common data type is the Text data type. This type is used
to represent a string of characters. This type is a powerful data type
because it hides the complexity of escaping special characters and
the actual number of bits required to represent each character.

For example, here is the sequence used above:

Bit[5] char = 6 // 'a'
Bit[5] char = 5 // ' '
Bit[5] char = 1 // tag escape character
Bit[8] tagID = cmlTag8BitEncoding
Bit[8] char = 'B' // 'B'
Bit[8] char = 'I' // 'I'
Bit[8] char = 'G' // 'G'
Bit[8] char = 0 // cmlCharEnd character
Bit[5] char = 9 // 'd'
Bit[5] char = 20 // 'o'
Bit[5] char = 12 // 'g'

PQA Encoding Format
PQA Tags

36 Palm File Formats Specification
modified 1/17/00 Preliminary

This can be represented using the Text data type as:

Text string = "a BIG dog"

Notice, that the Text data type hides the complexities of escaping
non-lower case alpha characters as well as the cmlCharEnd
character used to switch the mode back from 8-bit to 5-bit ASCII.

The combination of the Tag and Text types makes representing
combinations of formatting and text sequences much easier. For
example, the sequence used above that showed how bold text
would be represented was:

Bit[5] char = 6 // 'a'
Bit[5] char = 5 // ' '
Bit[5] char = 1 // tag escape character
Bit[8] tagID = cmlTagTextBold // bold constant
Bit[5] char = 8 // 'c'
Bit[5] char = 20 // 'o'
Bit[5] char = 28 // 'w'

Using the Tag and Text types, this sequence can be represented as:

Text string = "a "
Tag tag = cmlTagTextBold
Text string = "cow"

TextZ Type

Another convenient type is the TextZ type. This is basically a Text
type with a terminating cmlCharEnd character. This type is most
often used in tag parameter lists. It can be defined simply as:

TextZ text :

Text text
Char end = cmlCharEnd

As an example, the format of the anchor tag is defined as:

Tag tag = cmlTagAnchor
TextZ name

Where the name parameter is a string holding the local anchor
name. This string is delimited from any text that might follow the
tag by the cmlCharEnd character at the end of it. If a variable is

PQA Encoding Format
Unpacked Notation

Palm File Formats Specification 37
 Preliminary modified 1/17/00

defined as a TextZ type, it must have a cmlCharEnd character at
the end of it.

Unpacked Notation
Originally, the PQA format was envisioned as a tag-encoding
method with one representation: what is currently the
cmlCompressionTypeBitPacked compressed form. Later, it
became apparent that it would be advantageous to define a byte-
aligned uncompressed, or unpacked, representation for debugging
purposes. This unpacked form became the
cmlCompressionTypeNone form.

Unpacked PQA format then was defined to consist of only the tag
encoding. PQA data is thus representable in two forms: unpacked
and bit-packed compressed. In unpacked form, HTML tags are
encoded as PQA tags, including start and end tag characters in byte
form. In bit-packed compressed form, text characters (ASCII text,
start and end tag characters), tag attribute values, and image data
are encoded according to the bit-packed compression scheme.

The encoding module used by the Palm Query Application Builder
application and by the Palm Web Clipping Proxy server encodes
data in two passes. In the first pass, HTML is encoded as unpacked
data (cmlCompressionTypeNone). In the second pass, a bit-
packing compressor produces bit-packed
(cmlCompressionTypeBitPacked) data.

If one is writing or debugging a PQA encoder, during debugging,
you will probably find it useful to view and interpret the
intermediate cmlCompressionTypeNone data. This is much
easier to debug.

NOTE: This documentation and its notation denotes bit-packed
compressed content. You must interpret definitions of bit-packed
elements to produce the equivalent unpacked elements.

The following sections describe how to interpret the bit-packed
notation in this document to identify data elements of
cmlCompressionTypeNone .

PQA Encoding Format
Unpacked Notation

38 Palm File Formats Specification
modified 1/17/00 Preliminary

Translation of Bit-Packed to Uncompressed
Data
Equivalent content with no compression can be directly translated
from the bit-packed element definitions.

Unpacked PQA data includes just two special characters, as shown
in Table 3.2.

Table 3.2 Unpacked Encoding Characters

The translation from bit stream data in
cmlCompressionTypeBitPacked form to byte-oriented data in
cmlCompressionTypeNone form is straightforward:

• All bit-packed data elements less than 8 bits in width are
coded as one byte.

• All ASCII data is coded as 8-bit.

• All variable length UIntV and IntV types are encoded using
four bytes (DWord).

• All variable length Uint16V and Int16V types are encoded
using two bytes (Word).

• All variable length Uint8V and Int8V types are encoded
using one byte.

• Palm bitmap image data is uncompressed, and no
uncompressedDataSize value follows the header bytes, as
it does in the compressed form of the bitmap.

• The single character escape and the tag
cmlTag8BitEncoding are never used in a
cmlCompressionTypeNone byte stream.

All other characters are encoded in their ASCII form.

Value Special Reset Description

0 Yes Yes cmlCharEnd character. Used to
end TextZ data and certain tags.

1 Yes Yes cmlCharStart character,
followed by an 8 bit Tag ID.

PQA Encoding Format
Unpacked Notation

Palm File Formats Specification 39
 Preliminary modified 1/17/00

Here are examples of possible bit-packed data elements and
equivalent uncompressed translations:

Five-bit tags are treated in the following manner:

One can see that there is not a one-to-one mapping from elements of
a bit-packed data stream to elements of an unpacked data stream.
For example, bit-packed data includes single character escapes, 8-bit
character runs and variable-length integers; data encoded without
bit-packed compression does not include these escapes and number
packings. In other words, the special escape characters and bit

Bit-packed Data Uncompressed Data

Bit = 1 Byte = 0x01

Bit[3] = 1, 0, 1 Byte = 0x05

TextZ = "foo" "foo", NULL terminated ASCII string

Byte = 0xCD Byte = 0xCD

IntV = -1 DWord = 0xFFFFFFFF (-1)

UIntV = 7 DWord = 0x00000007

Uint8V = 2 Byte = 0x02

Bit-packed Data Uncompressed Data

cmlCharEnd (0) Byte = 0x00

cmlCharStart (1) Byte = 0x01

cmlCharEsc (2) Unused

cmlCharFormFeed (3) Byte = 0x0C

cmlCharLineBreak (4) Byte = 0x0D

cmlCharSpace (5) Byte = 0x20

cmlTag8BitEncoding Unused

cmlCharA (6) . . . cmlCharZ (31) Byte = 0x61 . . . 0x7a

PQA Encoding Format
Unpacked Notation

40 Palm File Formats Specification
modified 1/17/00 Preliminary

encodings are part of the bit-packed compression scheme only, not
part of the uncompressed encoding scheme.

Example Translation
Here is an example translation from bit-packed data to unpacked
data. The encoding from the previous example is shown.

Given a bit stream containing this bit-packed data (shown here with
a break-out of the data elements):

 00010 <single character escape>
01000101 E
 11101 x
 00110 a
 10010 m
 10101 p
 10001 l
 01010 e
 00000 <title string textz null terminator>
 00010 <single character escape>
01000010 B
 10100 o
 01001 d
 11110 y
 00101 <space>
 11001 t
 01010 e
 11101 x
 11001 t
 00001 <start of tag>
01110001 cmlTagCMLEnd

A byte stream containing the unpacked data (shown in
hexadecimal) appears as follows:

45 78 61 6D 70 6C 65 00 42 6F 64 79 20 74 65 78 74 01 71

 E x a m p l e \0 B o d y sp t e x t cmlEnd

PQA Encoding Format
Data Termination

Palm File Formats Specification 41
 Preliminary modified 1/17/00

Data Termination
A PQA format data stream is terminated with a cmlTagCMLEnd
tag.

As an aside, note that a byte buffer containing the complete,
terminated bit stream from the previous section, shown as
hexadecimal, appears as follows:

The hexadecimal above shows that the buffer includes extra zero
bits at the end to pad the stream's content to a byte boundary. This
padding is not part of the PQA format specification; the stream
actually ends with the last 1 bit of the cmlTagCMLEnd value. A
decoder would discard all bits following the cmlTagCMLEnd.

Tag Definitions
This section lists the various PQA tags available. Each tag is
described in detail along with its parameters, if any. This section
refers to tags by name, but in the actual implementation a pre-
defined constant is associated with each tag.

Tags are either end tag delimited, meaning that their effects are
ended by an appropriate cmlCharEnd character, or not, meaning
that their effects persist until another tag of that type is encountered.

Background Attributes

cmlTagBGColor

Description Sets the background color.

End Tag
Delimited

No

Parameters Byte red A value from 0 to 255 that indicates the amount
of red in the color.

12 2F 4D 2A C5 40 12 15 13 E2 E5 5D C8 5C 40

PQA Encoding Format
Tag Definitions

42 Palm File Formats Specification
modified 1/17/00 Preliminary

Byte green A value from 0 to 255 that indicates the amount
of green in the color.

Byte blue A value from 0 to 255 that indicates the amount
of blue in the color.

Example Tag tag = cmlTagBGColor
Byte red = 0xFF
Byte green = 0x80
Byte blue = 0x80

Text Attributes

cmlTagTextColor

Description Sets the text color.

End Tag
Delimited

No

Parameters Byte red A value from 0 to 255 that indicates the amount
of red in the color.

Byte green A value from 0 to 255 that indicates the amount
of green in the color.

Byte blue A value from 0 to 255 that indicates the amount
of blue in the color.

Example Tag tag = cmlTagTextColor
Byte red = 0xFF
Byte green = 0x80
Byte blue = 0x80

Text "This text is reddish"

cmlTagLinkColor

Description Sets the text color used to display unvisited, visited, and active
links.

PQA Encoding Format
Tag Definitions

Palm File Formats Specification 43
 Preliminary modified 1/17/00

End Tag
Delimited

No

Parameters Bit[2] type An enumerated type that indicates what type of
link the color is being set for. One of

cmlLinkColor
A link the user has not followed.

cmlLinkColorVisited
A link the user has followed previously.

cmlLinkColorActive
A link the user is tapping (the pen is
down) at the moment. Once the pen is
lifted, the color changes to the
visitedLinkColor .

Byte red A value from 0 to 255 that indicates the amount
of red in the color.

Byte green A value from 0 to 255 that indicates the amount
of green in the color.

Byte blue A value from 0 to 255 that indicates the amount
of blue in the color.

Example Tag tag = cmlTagLinkColor
Bit[2] type = cmlLinkColorVisited
Byte red = 0xFF
Byte green = 0x80
Byte blue = 0x80

cmlTagTextSize

Description Sets the current text size.

End Tag
Delimited

No

Parameters Bit[3] size HTML font size; a value from 1-7.

PQA Encoding Format
Tag Definitions

44 Palm File Formats Specification
modified 1/17/00 Preliminary

Example Tag tag = cmlTagTextSize
Bit[3] size = 3

cmlTagTextBold

Description Marks bold text style.

End Tag
Delimited

Yes

Parameters None

Example // Start bold text
Tag tag = cmlTagTextBold
Text "This is bold text"
// End bold text
Char end = cmlCharEnd

cmlTagTextItalic

Description Marks italic text style.

End Tag
Delimited

Yes

Parameters None

Example // Start italic text
Tag tag = cmlTagTextItalic
Text "This is italic text"
// End italic text
Char end = cmlCharEnd

cmlTagTextStrike

Description Marks strike-through text style.

End Tag
Delimited

Yes

PQA Encoding Format
Tag Definitions

Palm File Formats Specification 45
 Preliminary modified 1/17/00

Parameters None

Example // Start Strike-through text
Tag tag = cmlTagTextStrike
Text "This is strike-through text"
// End strike-through text
Char end = cmlCharEnd

cmlTagTextMono

Description Marks monospace text style.

End Tag
Delimited

Yes

Parameters None

Example // Start monospace text
Tag tag = cmlTagTextMono
Text "This is monospace text"
// End monospace text
Char end = cmlCharEnd

cmlTagTextSup

Description Marks superscript text style.

End Tag
Delimited

Yes

Parameters None

Example // Start superscript text
Tag tag = cmlTagTextSup
Text "This is superscript text"
// End superscript text
Char end = cmlCharEnd

PQA Encoding Format
Tag Definitions

46 Palm File Formats Specification
modified 1/17/00 Preliminary

cmlTagTextSub

Description Marks subscript text style.

End Tag
Delimited

Yes

Parameters None

Example // Start subscript text
Tag tag = cmlTagTextSub
Text "This is subscript text"
// End subscript text
Char end = cmlCharEnd

cmlTagTextUnderline

Description Marks underlined text style.

End Tag
Delimited

Yes

Parameters None

Example // Start underlined text
Tag tag = cmlTagTextUnderline
Text "This is underlined text"
// End underlined text
Char end = cmlCharEnd

cmlTag8BitEncoding

Description Marks the beginning of 8-bit encoded text while in 5-bit encoding
mode.

Note that in practice this tag is really a 5-bit encoding tag, and is
only used within bit-packed data, not unpacked data.

PQA Encoding Format
Tag Definitions

Palm File Formats Specification 47
 Preliminary modified 1/17/00

End Tag
Delimited

Yes

Parameters None

Example Tag tag = cmlTag8BitEncoding
Text "THIS IS 8-BIT ENCODED TEXT"
// End 8-bit encoded text
Char end = cmlCharEnd

cmlTagH1, cmlTagH2, cmlTagH3,
cmlTagH4, cmlTagH5, cmlTagH6

Description Marks document headings.

End Tag
Delimited

Yes

Parameters Bit hasAlign A flag that is set if the align attribute is used.

If (hasAlign)

 Bit[2] align An enumerated type that sets how the heading
is aligned horizontally in the window. One of
{cmlAlignLeft, cmlAlignCenter,
cmlAlignRight}

Example Tag tag = cmlTagH1
Bit hasAlign = 1
Bit[2] align = alignCenter
Text "This is a Heading"
Char cmlCharEnd // end heading tag

cmlTagHistoryListText

Description Transmits the content attribute of an HTML meta tag with the name
attribute = “HistoryListText” . The value is stored as a NULL
terminated string.

PQA Encoding Format
Tag Definitions

48 Palm File Formats Specification
modified 1/17/00 Preliminary

End Tag
Delimited

No

Parameters TextZ NULL terminated string value.

Example Tag tag = cmlTagHistoryListText
TextZ "Portfolio&Date&Time"

Paragraph Attributes

cmlTagParagraphAlign

Description Sets paragraph alignment.

End Tag
Delimited

No

Parameters Bit[2] align An enumerated type that sets how the
paragraph is aligned horizontally in the
window. One of {cmlAlignLeft,
cmlAlignCenter, cmlAlignRight}

Example // Turn on center alignment
Tag tag = cmlTagParagraphAlign
Bit[2] align = cmlAlignCenter
Text "\nThis paragraph is centered."
// Turn off center alignment
Tag tag = cmlTagParagraphAlign
Bit[2] align = cmlAlignLeft
Text "\nThis paragraph is left aligned."

cmlTagBlockQuote

Description Delimits block quotations.

End Tag
Delimited

Yes

Parameters None

PQA Encoding Format
Tag Definitions

Palm File Formats Specification 49
 Preliminary modified 1/17/00

Example Tag tag = cmlTagBlockQuote
Text "The whole problem with the world is that
fools and fanatics are always so certain of
themselves, but wiser people so full of
doubts."
Text "- Bertrand Russell"
Char cmlCharEnd // end block quote

cmlTagAddress

Description Delimits address data.

End Tag
Delimited

Yes

Parameters None

Example Tag tag = cmlTagAddress
Text "Big Bird\nSesame St.\nNY, NY"
Char cmlCharEnd // end address

Lists

cmlTagListOrdered

Description Marks the beginning of an ordered (numbered) list of items. Each
item in the list is preceded by either a cmlTagListItemNormal or
cmlTagListItemCustom tag. A final cmlCharEnd character
indicates the end of the list.

End Tag
Delimited

Yes

Parameters Bit[3] type An enumerated type that indicates the type of
numbering scheme. One of:

cmlListT1
Counting numbers (1, 2, 3, ...)

PQA Encoding Format
Tag Definitions

50 Palm File Formats Specification
modified 1/17/00 Preliminary

cmlListTa
Lowercase letters (a, b, c, ...)

cmlListTA
Uppercase letters (A, B, C, ...)

cmlListTi
Lowercase Roman numerals (i, ii, iii, ...)

cmlListTI
Uppercase Roman numerals (I, II, III, ...)

Uint16V start The starting sequence number, minus 1. (0
means start numbering with 1.)

Example // The list header
Tag tag = cmlTagListOrdered
Bit[3] type = cmlListT1
Uint16V start = 0
// The list items.
Tag tag = cmlTagListItemNormal
Text "First item"
Tag tag = cmlTagListItemNormal
Text "Second item"
Tag tag = cmlTagListItemCustom
Bit[2] mods = 0x03
Bit[3] type = cmlListTa
Uint16V value = 4
Text "Third item"
Char end = cmlCharEnd // end of list

cmlTagListUnordered

Description Marks the beginning of an unordered list of items. Either a
cmlTagListItemNormal or cmlTagListItemCustom tag
precedes each item in the list. A final cmlCharEnd character
indicates the end of the list.

End Tag
Delimited

Yes

PQA Encoding Format
Tag Definitions

Palm File Formats Specification 51
 Preliminary modified 1/17/00

Parameters Bit[3] type An enumerated type that specifies the bullet
type. One of:

cmlListTDisc
Filled circle bullet

cmlListTSquare
Filled square bullet

cmlListTCircle
Open circle bullet

Example // The list header
Tag tag = cmlTagListUnordered
Bit[3] type = cmlListTDisc
// The list items.
Tag tag = cmlTagListItemNormal
Text "First item"
Tag tag = cmlTagListItemNormal
Text "Second item"
Tag tag = cmlTagListItemCustom
Bit[2] mods = 0x01
Bit[3] type = cmlListTSquare
Text "Third item"
Char cmlCharEnd // end of list

cmlTagListDefinition

Description Marks the beginning of a definition list. A cmlTagListItemTerm
tag precedes each term and a cmlTagListItemDefinition
precedes each definition. An cmlCharEnd character delimits the
entire list.

End Tag
Delimited

Yes

Parameters None

Example Tag tag = cmlTagListDefinition

Tag tag = cmlTagListItemTerm

PQA Encoding Format
Tag Definitions

52 Palm File Formats Specification
modified 1/17/00 Preliminary

Text "This data corresponds to the first <DT>
tag's data."
Tag tag = cmlTagListItemDefinition
Text "This data corresponds to the first <DD>
tag's data."

Tag tag = cmlTagListItemTerm
Text "This data corresponds to the second <DT>
tag's data."
Tag tag = cmlTagListItemDefinition
Text "This data corresponds to the second <DD>
tag's data."

Char cmlCharEnd // end of list

cmlTagListItemNormal

Description Marks the beginning of a normal list item in either an ordered or
unordered list. If the bullet style, numbering style, or sequence
number of an item is not the default for the current list, the
cmlTagListItemCustom tag must be used.

End Tag
Delimited

No

Parameters None

Example Tag tag = cmlTagListItemNormal
Text "Third item"

cmlTagListItemCustom

Description Marks the beginning of a custom list item in either an ordered or
unordered list. If the bullet style, numbering style, or sequence
number of an item is not the default for the current list, this tag must
be used.

The mods parameter indicates whether type , value , or both are
specified.

PQA Encoding Format
Tag Definitions

Palm File Formats Specification 53
 Preliminary modified 1/17/00

End Tag
Delimited

No

Parameters Bit[2] mods Flags controlling these attributes:

cmlFlagListModValue[1]
Set if the value attribute is used.

cmlFlagListModType[0]
Set if the type attribute is used.

if (cmlFlagListModValue)

 Uint16V value Ignored for unordered lists. In ordered lists,
value is the numeric value for this element,
minus 1.

if (cmlFlagListModType)

 Bit[3] type The bullet or number style. An enumerated
type. One of:

cmlListTDisc
Filled circle bullet

cmlListTSquare
Filled square bullet

cmlListTCircle
Open circle bullet

cmlListT1
Counting numbers (1, 2, 3, ...)

cmlListTa
Lowercase letters (a, b, c, ...)

cmlListTA
Uppercase letters (A, B, C, ...)

cmlListTi
Lowercase Roman numerals (i, ii, iii, ...)

cmlListTI
Uppercase Roman numerals (I, II, III, ...)

Example Tag tag = cmlTagListItemCustom
Bit[2] mods = 0x03

PQA Encoding Format
Tag Definitions

54 Palm File Formats Specification
modified 1/17/00 Preliminary

Bit[3] type = cmlListTSquare
Uint16V value = 0
Text "Third item"

cmlTagListItemTerm

Description Marks the beginning of a definition term in a definition list.

End Tag
Delimited

No

Parameters None

Example Tag tag = cmlTagListItemTerm
Text "Term for definition"

cmlTagListItemDefinition

Description Marks the beginning of a definition of a term in a definition list.

End Tag
Delimited

No

Parameters None

Example Tag tag = cmlTagListItemDefinition
Text "Definition of term."

Forms

cmlTagForm

Description Marks the start of a form. A form encloses one or more input items
and is cmlCharEnd delimited.

There are essentially two classes of forms: stand-alone forms (like in
standard HTML) and server dependent forms. Server dependent
forms can be much smaller than standard forms and are typically
the only type of form received over a wireless link. Stand-alone

PQA Encoding Format
Tag Definitions

Palm File Formats Specification 55
 Preliminary modified 1/17/00

forms, on the other hand, are designed to be contained within a
PQA resident on the Palm device.

A stand-alone form is indicated by a 1 in the standalone attribute
of the form tag. A 1 in this bit indicates that the form also has post
and action attributes and that each of its input fields has the
necessary attributes (name and value) for submitting the form
without making the proxy reference the original HTML form on the
Internet first.

A server dependent form is indicated by a 0 in the standalone
attribute. A 0 in this bit indicates that the form does not have post
or action attributes and that its input fields do not have associated
name or value attributes. When this type of form is sent to the
proxy server, the proxy server must first reference the original
HTML form on the Internet before it can actually submit the request
to the CGI script.

End Tag
Delimited

Yes

Parameters Uint16V formIndex
Assigned by the proxy server; starts at 0 for the
first form in a document.

Bit[3] flags Flags controlling these attributes:

cmlFlagFormIsLocalAction[2]
Set when the protocol scheme identifies
an action that is local to the device; that
is, it is one of the set (file:, mailto:, palm:,
palmcall:).

cmlFlagFormIsSecure[1]
Used only for server-dependent forms.
Set if the action URL for the form is for
a secure site (uses the https scheme). It is
used by the client to determine if it
should send the form submission to the
proxy in encrypted form or not. For
stand-alone forms, the client should
instead check the scheme that's in the

PQA Encoding Format
Tag Definitions

56 Palm File Formats Specification
modified 1/17/00 Preliminary

action URL parameter so see if the
submission should be encrypted or not.

cmlFlagFormIsStandalone[0]
Set if the form is stand-alone; not set if
the form is server dependent.

if (cmlFlagFormIsStandalone)

 Bit post If set to 1, the form is submitted to the CGI
script using the HTTP POST method; if set to 0,
the form is submitted to the CGI script using
the HTTP GET method.

 TextZ encType String that specifies the type of form encoding.
If no format is specified in the HTML, then this
string is NULL and the default, “application/x-
www-form-urlencoded” is implied.

 TextZ action URL of the CGI script on the server that
handles the form submission.

Example Tag tag = cmlTagForm
Uint16V formIndex = 0
Bit[3] flags = 1 // cmlFlagFormIsStandalone
Bit post = 0
TextZ encType = 0
TextZ action = "http://www.server.com/cgi-bin/
submit"

// The form input items
Text "Age 0-12:"
Tag tag = cmlTagInputRadio
Uint16V group = 0
Bit [4] flags = 3 // has name, value
TextZ name = "age"
TextZ value = "0-12"

Text "Age 13-17:"
Tag tag = cmlTagInputRadio
Uint16V group = 0
Bit [4] flags = 7 // has name, value, is
checked

PQA Encoding Format
Tag Definitions

Palm File Formats Specification 57
 Preliminary modified 1/17/00

TextZ name = "age"
TextZ value = "13-17"

Tag tag = cmlTagInputSubmit
Bit[2] flags = 2 // has value
TextZ value = "OK"

Char endForm = cmlCharEnd

cmlTagInputTextLine

Description Marks a single line input text field in a form.

End Tag
Delimited

No

Parameters Uint16V size Visible width of field in characters.

Uint16V maxLength
Maximum number of allowed characters. 0
means no limit.

Bit[2] flags Flags controlling these attributes:

cmlFlagInputHasValue[1]
Set if the hasValue attribute is used.

cmlFlagInputHasName[0]
Set if the hasName attribute is used. Set
only in stand-alone forms.

if (cmlFlagInputHasName)

 TextZ name String holding the name of the input field.

if (cmlFlagInputHasValue)

 TextZ value String holding the initial value for the input
field.

Example Tag tag = cmlTagForm
Text "Enter Name:"

Tag tag = cmlTagInputTextLine

PQA Encoding Format
Tag Definitions

58 Palm File Formats Specification
modified 1/17/00 Preliminary

Uint16V size = 20
Uint16V maxLength = 0
Bit[2] flags = 3
TextZ name = "name"
TextZ value = "your name here"

cmlTagInputPassword

Description Marks a single line password input field in a form.

End Tag
Delimited

No

Parameters Uint16V size Visible width of field in characters.

Uint16V maxLength
Maximum number of allowed characters.
Specify 0 for no limit.

Bit[2] flags Flags controlling these attributes:

cmlFlagInputHasValue[1]
Set if the hasValue attribute is used.

cmlFlagInputHasName[0]
Set if the hasName attribute is used. Set
only in stand-alone forms.

if (cmlFlagInputHasName)

 TextZ name String holding the name of the input field.

if (cmlFlagInputHasValue)

 TextZ value String holding the initial value for the input
field.

Example Text "Enter Password:"
Tag tag = cmlTagInputPassword
Uint16V size = 20
Uint16V maxLength = 0
Bit[2] flags = 1
TextZ name = "passwd"

PQA Encoding Format
Tag Definitions

Palm File Formats Specification 59
 Preliminary modified 1/17/00

cmlTagInputRadio

Description Marks a radio button in a form.

End Tag
Delimited

No

Parameters Uint16V group Assigned by the proxy server; it allows the
client to perform mutual exclusion selecting.

Bit[4] flags Flags controlling these attributes:

cmlFlagInputHasText[3]
Set if the Text attribute is included as an
active part of the radio button; that is, in
Clipper, the user can tap the text as well
as the button to operate the control. The
encoder automatically sets this bit for
HTML pages that are identified by the
PalmComputingPlatform meta tag. If
this bit is not set, then the radio button
label appears as a separate text string
before or after the radio button tag.

cmlFlagInputChecked[2]
Indicates the initial state of the control. If
set, the control is selected.

cmlFlagInputHasValue[1]
Set if the hasValue attribute is used. If
this attribute is not used, the string “on”
is sent to the server if the control is
selected.

cmlFlagInputHasName[0]
Set if the hasName attribute is used. Set
only in stand-alone forms.

if (cmlFlagInputHasName)

 TextZ name String holding the name of the radio button
control.

if (cmlFlagInputHasValue)

PQA Encoding Format
Tag Definitions

60 Palm File Formats Specification
modified 1/17/00 Preliminary

 TextZ value String holding the value for the radio button.
This value is sent to the server if the control is
selected.

if (cmlFlagInputHasText)

 TextZ Text String holding the text label next to the control.
This label is included as an active part of the
radio button.

Example Tag tag = cmlTagInputRadio
Uint16V group = 0
Bit[4] flags = 0xB // cmlFlagInputHasName |

cmlFlagInputHasValue | cmlFlagInputHasText
TextZ name = "age"
TextZ value = "13-17"
TextZ Text = "Age 13-17:"

cmlTagInputCheckBox

Description Marks a checkbox in a form.

End Tag
Delimited

No

Parameters Bit[4] flags Flags controlling these attributes:

cmlFlagInputHasText[3]
Set if the Text attribute is included as an
active part of the checkbox; that is, in
Clipper, the user can tap the text as well
as the checkbox to operate the control.
The encoder automatically sets this bit
for HTML pages that are identified by
the PalmComputingPlatform meta tag. If
this bit is not set, then the checkbox label
appears as a separate text string before or
after the checkbox tag.

cmlFlagInputChecked[2]
Indicates the initial state of the control. If
set, the control is checked.

PQA Encoding Format
Tag Definitions

Palm File Formats Specification 61
 Preliminary modified 1/17/00

cmlFlagInputHasValue[1]
Set if the hasValue attribute is used. If
this attribute is not used, the string “on”
is sent to the server if the control is
selected.

cmlFlagInputHasName[0]
Set if the hasName attribute is used. Set
only in stand-alone forms.

if (cmlFlagInputHasName)

 TextZ name String specifying the name of the checkbox.

if (cmlFlagInputHasValue)

 TextZ value String holding the value for the checkbox. This
value is sent to the server if the control is
selected.

if (cmlFlagInputHasText)

 TextZ Text String holding the text label next to the control.
This label is included as an active part of the
checkbox.

Example Tag tag = cmlTagInputCheckBox
Bit[4] flags = 3 // cmlFlagInputHasName |

cmlFlagInputHasValue
TextZ name = "newsletter"
TextZ value = "1"

// Checkbox label is not part of the object.
// It could be formatted text or an image.
Text "Yes" // checkbox label, not active

cmlTagInputSubmit

Description Marks a submit button in a form.

End Tag
Delimited

No

Parameters Bit[2] flags Flags controlling these attributes:

PQA Encoding Format
Tag Definitions

62 Palm File Formats Specification
modified 1/17/00 Preliminary

cmlFlagInputHasValue[1]
Set if the hasValue attribute is used to
set a custom button label.

cmlFlagInputHasName[0]
Set if the hasName attribute is used. Set
only in stand-alone forms.

if (cmlFlagInputHasName)

 TextZ name String holding the name of the button.

if (cmlFlagInputHasValue)

 TextZ value String holding the button label. If this
parameter is not included, the default button
label is “submit.”

Example Tag tag = cmlTagInputSubmit
Bit[2] flags = 2
TextZ value = "OK"

cmlTagInputReset

Description Marks a reset button in a form.

End Tag
Delimited

No

Parameters Bit hasValue Set if the hasValue attribute is used to set a
custom button label.

if (hasValue)

 TextZ value String holding the button label. If this
parameter is not included, the default button
label is “reset.”

Example Tag tag = cmlTagInputReset
Bit hasValue = 1
TextZ value = "Clear Form"

PQA Encoding Format
Tag Definitions

Palm File Formats Specification 63
 Preliminary modified 1/17/00

cmlTagInputHidden

Description Marks a hidden input field in a form. This tag is not generated for
server supplied forms except for value strings of either
“%zipcode” or “%deviceid”.

End Tag
Delimited

No

Parameters Bit[2] flags Flags controlling these attributes:

cmlFlagInputHasValue[1]
Set if the hasValue attribute is used to
set a custom button label.

cmlFlagInputHasName[0]
Set if the hasName attribute is used. Set
only in stand-alone forms.

if (cmlFlagInputHasName)

 TextZ name String holding the name of the input field.

if (cmlFlagInputHasValue)

 TextZ value String holding the initial value for the input
field.

Example Tag tag = cmlTagInputHidden
Bit[2] flags = 3
TextZ name = "Age"
TextZ value = "21"

cmlTagInputTextArea

Description Marks a multi-line input text field within a form.

End Tag
Delimited

Yes

Parameters Uint16V rows Number of rows in the input field.

Uint16V cols Width of the input field in characters.

PQA Encoding Format
Tag Definitions

64 Palm File Formats Specification
modified 1/17/00 Preliminary

Bit hasName Set if the hasName attribute is used to set an
input field name. Set only in stand-alone forms.

if (hasName)

 TextZ name String holding the name of the input field.

TextZ value String holding the initial value for the input
field. The end of the initial text is indicated by a
cmlCharEnd character.

Example Text "Enter Address:"
Tag tag = cmlTagInputTextArea
Uint16V rows = 2
Uint16V cols = 20
Bit hasName = 1
TextZ name = "address"
TextZ value = "your address \nhere: "
Char cmlCharEnd

cmlTagSelect

Description Marks a selection menu in a form.

This element is always followed by one or more TextZ elements
that represent the menu items; these are separated by
cmlTagSelectItemNormal or cmlTagSelectItemCustom
tags. The cmlTagSelectItemCustom tag is used for preselected
items. A cmlCharEnd character follows the last item and indicates
the end of the selection menu.

End Tag
Delimited

Yes

Parameters Bit[2] flags Flags controlling these attributes:

cmlFlagInputMultiple[1]
Set if multiple item selection is allowed.

cmlFlagInputHasName[0]
Set if the hasName attribute is used. Set
only in stand-alone forms.

PQA Encoding Format
Tag Definitions

Palm File Formats Specification 65
 Preliminary modified 1/17/00

Uint16V size Number of items visible at once in the selection
list, minus 1.

if (cmlFlagInputHasName)

 TextZ name String holding the name of the selection menu.

Example Tag tag = cmlTagSelect
Bit[2] flags = 3
Uint16V size = 2
TextZ name = "choice"

// The select items.
Tag tag = cmlTagSelectItemNormal
TextZ "First choice"
Tag tag = cmlTagSelectItemCustom
Bit[2] flags = 1
TextZ "Second choice"
Tag tag = cmlTagSelectItemNormal
TextZ "Third choice"

Char endSelect = cmlCharEnd

cmlTagSelectItemNormal

Description Precedes a normal item in a selection menu. A normal item means
that it is not preselected and it does not have a value different from
its text content.

End Tag
Delimited

No

Parameters None

Example Tag tag = cmlTagSelectItemNormal
TextZ "Third item"

cmlTagSelectItemCustom

Description Precedes a custom item in a selection menu.

PQA Encoding Format
Tag Definitions

66 Palm File Formats Specification
modified 1/17/00 Preliminary

End Tag
Delimited

No

Parameters Bit[2] flags Flags controlling these attributes:

cmlFlagInputHasValue[1]
Set if the hasValue attribute is used. Set
only in stand-alone forms.

cmlFlagInputSelected[0]
Set if the item is to be preselected in the
menu.

if (cmlFlagInputHasValue)

 TextZ value A string holding text that should be used as the
value of this item at form submission. If this
parameter is omitted, then the TextZ string
that follows the cmlTagSelectItemCustom
tag is used instead.

Example Tag tag = cmlTagSelectItemCustom
Bit[2] flags = 3
TextZ value = "3"
TextZ "Third item"

cmlTagInputDatePicker

Description Marks a date picker.

End Tag
Delimited

No

Parameters Bit hasName Set if the name attribute is used to set a name
for the date field.

UIntV date The initial value of the date field; the number of
seconds since midnight, 1/1/1904 GMT.
Specify 0 to use the current date.

if (hasName)

 TextZ name String holding the name of the date field.

PQA Encoding Format
Tag Definitions

Palm File Formats Specification 67
 Preliminary modified 1/17/00

Example Tag tag = cmlTagInputDatePicker
Bit hasName = 1
UIntV date = 0xA1234000
TextZ name = "yesterday"

cmlTagInputTimePicker

Description Marks a time picker.

End Tag
Delimited

No

Parameters Bit hasName Set if the name attribute is used to set a name
for the time field.

UIntV seconds The initial value of the time field; the number of
seconds since midnight. Specify 0 to use the
current time.

if (hasName)

 TextZ name String holding the name of the time field.

Example Tag tag = cmlTagInputTimePicker
Bit hasName = 0
UIntV seconds = 3600 // 1:00 am

Tables

cmlTagTable

Description Indicates the start of a table.

Each row in the table begins with a cmlTagTableRow tag that has
optional parameters for the horizontal and vertical alignment of the
cells in that row.

Each cell in a row begins with either a cmlTagTableData or a
cmlTagTableHeader tag. The only difference is that header cells
are rendered in bold typeface. After the last row, an additional
cmlCharEnd indicates the end of the table.

PQA Encoding Format
Tag Definitions

68 Palm File Formats Specification
modified 1/17/00 Preliminary

End Tag
Delimited

Yes

Parameters Bit[7] flags Flags controlling these attributes:

cmlFlagTableHasAlign[0]
Set if the hAlign attribute is used.

cmlFlagTableHasWidth[1]
Set if the width attribute is used.

cmlFlagTableHasBorder[2]
Set if the border attribute is used.

cmlFlagTableHasCellSpacing[3]
Set if the cellSpacing attribute is used.

cmlFlagTableHasCellPadding[4]
Set if the cellPadding attribute is used.

reserved1[5]
Not used.

reserved2[6]
Not used.

If (cmlFlagTableHasAlign)

 Bit[2] hAlign An enumerated type setting how the table is
aligned on the page. One of {cmlAlignLeft ,
cmlAlignCenter , cmlAlignRight} .

If (cmlFlagTableHasWidth)

 Uint16V width Table width in pixels. 0 indicates to calculate
the width of the table is from the contents.

If (cmlFlagTableHasBorder)

 Uint8V border Border width in pixels. 0 indicates to suppress
the border.

If (cmlFlagTableHasCellSpacing)

 Uint8V cellSpacing
Cell spacing in pixels. The cell spacing is the
distance between the borders of each cell. If
non-zero, then cells are spaced apart from each
other. The default is 0.

PQA Encoding Format
Tag Definitions

Palm File Formats Specification 69
 Preliminary modified 1/17/00

If (cmlFlagTableHasCellPadding)

 Uint8V cellPadding
Cell padding in pixels. The cell padding is the
distance between the border around each cell
and the cell's contents. The default is 0.

Example Tag tag = cmlTagTable
Bit[7] flags = 0x01 // cmlFlagTableHasAlign
Bit[2] hAlign = cmlAlignCenter

Tag tag = cmlTagTableRow
Bit hasAlign = 0
Tag tag = cmlTagTableHeader
Bit[7] flags = 0
Text "Row1, Col2 Head"
Char cmlCharEnd
Tag tag = cmlTagTableHeader
Bit[7] flags = 0
Text "Row1, Col2 Head"
Char cmlCharEnd

Tag tag = cmlTagTableRow
Bit hasAlign = 0
Tag tag = cmlTagTableData
Bit[7] flags = 0
Text "row2, col1"
Char cmlCharEnd
Tag tag = cmlTagTableData
Bit[7] flags = 0
Text "row2, col2"
Char cmlCharEnd

Char cmlCharEnd // end of table

cmlTagCaption

Description Marks the caption to be placed above or below a table. It can appear
anywhere in a table.

PQA Encoding Format
Tag Definitions

70 Palm File Formats Specification
modified 1/17/00 Preliminary

End Tag
Delimited

Yes

Parameters Bit captionAtTop
A Boolean value. 0 means place the caption
below the table; 1 means place the caption
above the table.

Example Tag tag = cmlTagCaption
Bit captionAtTop = 1
Text "Table Title"
Char cmlCharEnd // end of caption

cmlTagTableRow

Description Separates rows of a table.

Each row in the table begins with a cmlTagTableRow tag.

End Tag
Delimited

Yes

Parameters Bit hasAlign Set if the hAlign and vAlign attributes are
used.

if (hasAlign)

 Bit[2] hAlign An enumerated type that sets how text is
aligned horizontally within the cells in the row.
One of {cmlAlignLeft , cmlAlignCenter ,
cmlAlignRight} .

 Bit[2] vAlign An enumerated type that sets how text is
aligned vertically within the cells in the row.
One of {cmlVAlignTop,
cmlVAlignCenter, cmlVAlignBottom} .

Example Tag tag = cmlTagTableRow
Bit hasAlign = 0
Tag tag = cmlTagTableHeader
Bit[7] flags = 0
Text "row1, col1"

PQA Encoding Format
Tag Definitions

Palm File Formats Specification 71
 Preliminary modified 1/17/00

Char cmlCharEnd

Tag tag = cmlTagTableRow
Bit hasAlign = 1
Bit[2] hAlign = cmlAlignRight
Bit[2] vAlign = cmlVAlignTop
Tag tag = cmlTagTableData
Bit[7] flags = 0
Text "row2, col1"
Char cmlCharEnd

cmlTagTableData

Description Marks a data cell in a table. Contrast this tag with
cmlTagTableHeader.

End Tag
Delimited

Yes

Parameters Bit[7] flags Flags controlling these attributes:

cmlFlagCellHasHAlign[0]
Set if the hAlign attribute is used.

cmlFlagCellHasVAlign[1]
Set if the vAlign attribute is used.

cmlFlagCellHasColSpan[2]
Set if the colSpan attribute is used.

cmlFlagCellHasRowSpan[3]
Set if the rowSpan attribute is used.

cmlFlagCellHasHeight[4]
Set if the height attribute is used.

cmlFlagCellHasWidth[5]
Set if the width attribute is used.

cmlFlagCellNoWrap[6]
Set if automatic word wrap within the
contents of the cell is disabled.

Parameters If (cmlFlagCellHasHAlign)

PQA Encoding Format
Tag Definitions

72 Palm File Formats Specification
modified 1/17/00 Preliminary

 Bit[2] hAlign An enumerated type that sets horizontal cell
alignment. One of {cmlAlignLeft ,
cmlAlignCenter , cmlAlignRight} .

If (cmlFlagCellHasVAlign)

 Bit[2] vAlign An enumerated type that sets vertical cell
alignment. One of {cmlVAlignTop,
cmlVAlignCenter, cmlVAlignBottom} .

If (cmlFlagCellHasColSpan)

 Uint8V colSpan
Number of columns spanned by the cell, minus
1. For example, if the cell spans one column,
this is set to 0.

If (cmlFlagCellHasRowSpan)

 Uint8V rowSpan
Number of rows spanned by the cell, minus 1.

If (cmlFlagCellHasHeight)

 Uint16V height
Height of the cell in pixels.

If (cmlFlagCellHasWidth)

 Uint16V width Width of the cell in pixels.

Example Tag tag = cmlTagTableData
Bit[7] flags = 0x11 // cmlFlagCellHasColSpan |

cmlFlagCellHasHAlign
Uint8V colSpan = 1
Bit[2] hAlign = cmlAlignCenter
Text "row2, col2"
Char cmlCharEnd

cmlTagTableHeader

Description Marks a header cell in a table. Header cells are rendered in bold
typeface. Contrast this tag with cmlTagTableData.

PQA Encoding Format
Tag Definitions

Palm File Formats Specification 73
 Preliminary modified 1/17/00

End Tag
Delimited

Yes

Parameters Bit[7] flags Flags controlling these attributes:

cmlFlagCellHasHAlign[0]
Set if the hAlign attribute is used.

cmlFlagCellHasVAlign[1]
Set if the vAlign attribute is used.

cmlFlagCellHasColSpan[2]
Set if the colSpan attribute is used.

cmlFlagCellHasRowSpan[3]
Set if the rowSpan attribute is used.

cmlFlagCellHasHeight[4]
Set if the height attribute is used.

cmlFlagCellHasWidth[5]
Set if the width attribute is used.

cmlFlagCellNoWrap[6]
Set if automatic word wrap within the
contents of the cell is disabled.

Parameters If (cmlFlagCellHasHAlign)

 Bit[2] hAlign An enumerated type that sets horizontal cell
alignment. One of {cmlAlignLeft ,
cmlAlignCenter , cmlAlignRight} .

If (cmlFlagCellHasVAlign)

 Bit[2] vAlign An enumerated type that sets vertical cell
alignment. One of {cmlVAlignTop,
cmlVAlignCenter, cmlVAlignBottom} .

If (cmlFlagCellHasColSpan)

 Uint8V colSpan
Number of columns spanned by the cell, minus
1. For example, if the cell spans one column,
this is set to 0.

If (cmlFlagCellHasRowSpan)

PQA Encoding Format
Tag Definitions

74 Palm File Formats Specification
modified 1/17/00 Preliminary

 Uint8V rowSpan
Number of rows spanned by the cell, minus 1.

If (cmlFlagCellHasHeight)

 Uint16V height
Height of the cell in pixels.

If (cmlFlagCellHasWidth)

 Uint16V width Width of the cell in pixels.

Example Tag tag = cmlTagTableHeader
Bit[7] flags = 0x14 // cmlFlagCellHasColSpan |

cmlFlagCellHasHeight
Uint8V colSpan = 1
Uint16V height = 10
Text "row1, col2"
Char cmlCharEnd

Hyperlinks

cmlTagHyperlink

Description Marks a hyperlink. All text enclosed between the
cmlTagHyperlink tag and the terminating cmlCharEnd is part of
the hyperlink.

Unlike the anchor (<A>) element in HTML, which can be used to
define both hyperlinks and named anchors (that is, fragment
identifiers using the NAME attribute), the cmlTagHyperlink tag
is used only to define hyperlinks. The cmlTagAnchor tag, defined
below, is used exclusively to define named anchors.

End Tag
Delimited

Yes

Parameters Bit[2] flags2 Flags controlling these attributes:

cmlFlagLinkIsBinary[1]
Not currently used.

PQA Encoding Format
Tag Definitions

Palm File Formats Specification 75
 Preliminary modified 1/17/00

cmlFlagLinkIsLocalRef[0]
Set if this hyperlink’s URL specifies a
device-side scheme (e.g. file:).

Bit[8] flags Flags controlling these attributes:

cmlFlagLinkIsFakeRemote[7]
Set if this hyperlink is used by the
Palm OS and is set to simulate a wireless
request by delaying access to the
(hopefully) internal data.

cmlFlagLinkIsSameDoc[6]
Set if this is a hyperlink into the current
document.

cmlFlagLinkHasHref[5]
Set if an hRef attribute is included. If
hasHRef is false, then the
extLinkIndex and hashValue
attributes are provided. In this case, the
data was probably received via the server
and the enumeration of hyperlinks
present in the current file must be used in
the data request.1

cmlFlagLinkIsSecure[4]
Set if the hyperlink is to a secure page.

cmlFlagLinkIsFragment[3]
Set if the hyperlink references a fragment
within the same page; the
fragmentName attribute is provided.

cmlFlagLinkInternal[2]
Set if this hyperlink references a
document in the current PQA file. In this
case, the PQFIndex attribute is
provided. If internal is false, then a

1.Normally, in pages received from the Palm Web Clipping Proxy server, all hyperlink
URLs are removed before the page is sent to the Palm VII unit. If the user taps a hy-
perlink, the index of that link is sent back to the server, which refetches the page and
finds the corresponding URL.

PQA Encoding Format
Tag Definitions

76 Palm File Formats Specification
modified 1/17/00 Preliminary

complete representation of the URL is
provided if the hasHRef bit is true .

cmlFlagLinkHasTitle[1]
Set if a title attribute is included.

cmlFlagLinkIsButton[0]
Set if this hyperlink should be displayed
as a button rather than text.

if (cmlFlagLinkIsSameDoc)

 if (cmlFlagLinkIsFragment)

 TextZ fragmentName
String holding the fragment portion of the URL.
For example, if the URL is
“file:\foo.htm#section1”, then the fragment is
“section1“.

Else if (cmlFlagLinkInternal)

 Uint16V PQFIndex
The index of the resource (referenced by the
hyperlink) in the current PQA file. The first
resource has an index of 1.

 If (cmlFlagLinkIsFragment)

 TextZ fragmentName
String holding the fragment portion of the URL.

Else // cmlFlagLinkInternal is false

 If (!cmlFlagLinkHasHref) // cmlFlagLinkHasHref is false

 Uint16V extLinkIndex
The index of the link on the page. This is used
only for external links from external (non-PQA)
pages.

 Uint16V hashValue
A hash value for the page that is used to check
if the page source has changed when it is
refetched to retrieve a URL. (See the previous
footnote.) This is used only for external links
from external (non-PQA) pages.

PQA Encoding Format
Tag Definitions

Palm File Formats Specification 77
 Preliminary modified 1/17/00

 else // cmlFlagLinkHasHref is true

 TextZ href String holding the complete URL.

if (cmlFlagLinkHasTitle)

 TextZ title String holding the title of the referenced page.

Example Here is an example of an external explicit link that would typically
be used by a document designed to be loaded onto a Palm device
through the HotSync mechanism or some other non-wireless means:

Tag tag = cmlTagHyperlink
Bit[2] flags 2 = 0
Bit[8] flags = 0x22 // cmlFlagLinkHasTitle,

cmlFlagLinkHasHref
TextZ href = "http://www.Palm.com/"
TextZ title = "Palm home page"
Text "Click on this text"
Char cmlCharEnd // terminates cmlTagHyperlink

Here is an example of an external indexed link that would typically
be used by a document that was obtained from a wireless link.
Notice that it does not include a URL or a title in order to conserve
space.

Tag tag = cmlTagHyperlink
Bit[2] flags2 = 0
Bit[8] flags = 0
Uint16V extLinkIndex = 14
Uint16V hashValue = 3056
Text "Click on this text"
Char cmlCharEnd // terminates cmlTagHyperlink

Here is an example of an internal link that is used to jump to
another document within the same PQA. It indicates to jump to the
fourth resource in the current PQA file.

Tag tag = cmlTagHyperlink
Bit[2] flags2 = 0
Bit[6] flags = 4 // cmlFlagLinkInternal
Uint16V PQFIndex = 4
Text "Click on this text"
Char cmlCharEnd // terminates cmlTagHyperlink

PQA Encoding Format
Tag Definitions

78 Palm File Formats Specification
modified 1/17/00 Preliminary

cmlTagAnchor

Description Marks a named document anchor, or fragment identifier, within a
document.

The cmlTagAnchor tag is used only to define local named anchors.
The cmlTagHyperlink tag is used exclusively to define
hyperlinks.

End Tag
Delimited

Yes

Parameters TextZ name String holding the local anchor name (not
including the preceding “#” character).

Example Tag tag = cmlTagAnchor
TextZ name = "anchor"

Graphical Elements

cmlTagImage

Description Marks an image.

End Tag
Delimited

No

Parameters Bit[8] flags Flags controlling these attributes:

cmlFlagImageLocalPQA[7]
Set if the image is a resource in the
current PQA.

cmlFlagImageHasAlt[6]
Set if an alt attribute is included.

cmlFlagImageHasSrc[5]
Set if a src attribute is included.

cmlFlagImageHasVSpace[4]
Set if a vSpace attribute is included.

PQA Encoding Format
Tag Definitions

Palm File Formats Specification 79
 Preliminary modified 1/17/00

cmlFlagImageHasHSpace[3]
Set if an hSpace attribute is included.

cmlFlagImageHasBorder[2]
Set if a border attribute is included.

cmlFlagImageHasAlign[1]
Set if an align attribute is included.

cmlFlagImageEmbedded[0]
Set if the image is embedded into the
data stream received from the Palm Web
Clipping Proxy server. The image data is
included in the imageData attribute.

If (cmlFlagImageLocalPQA)

 Uint16V PQFLinkIndex
The index of the image resource in the current
PQA file. The first resource has an index of 1.

if (cmlFlagImageHasAlt)

 TextZ alt Alternate text string for the image.

if (cmlFlagImageHasSrc)

 TextZ src Source URL; only for references to resources in
other (than the current) PQA files.

if (cmlFlagImageHasVSpace)

 Uint8V vSpace Vertical space between the image and the text
above and below, in pixels, minus 1.

if (cmlFlagImageHasHSpace)

 Uint8V hSpace Horizontal space between the image and the
text to the left and right, in pixels, minus 1.

if (cmlFlagImageHasBorder)

 Uint8V border Border width in pixels, minus 1.

If (cmlFlagImageHasAlign)

 Bit[3] align An enumerated type that sets how the image is
aligned relative to the text. One of:

PQA Encoding Format
Tag Definitions

80 Palm File Formats Specification
modified 1/17/00 Preliminary

cmlIAlignLeft
Image is aligned to left side of window,
and subsequent text wraps around right
side of image. Creates a “floating” image.

cmlIAlignRight
Image is aligned to right side of window,
and subsequent text wraps around left
side of image. Creates a “floating” image.

cmlIAlignTop
Subsequent text is aligned to the top of
the image.

cmlIAlignMiddle
Baseline of the current text line is aligned
with the middle of the image.

cmlIAlignBottom
Bottom of the image is aligned with the
baseline of the current text line.

If (cmlFlagImageEmbedded)

 Image imageData
Image data in Palm OS bitmap format.

Example Tag tag = cmlTagImage
Bit[8] flags = 0x01 // IsEmbedded
Image imageData = //image data stream

Tag tag = cmlTagImage
Bit[8] flags = 0x86 // cmlFlagImageHasAlign,

cmlFlagImageHasBorder, cmlFlagImageLocalPQA
Uint16V PQFLinkIndex = 4
Bit[3] Align = cmlIAlignTop
Uint8V Border = 3 // border of 4 pixels

cmlTagHorizontalRule

Description Places a horizontal rule graphic in the window. If no attributes are
specified, the default rule appearance is set by the Clipper

PQA Encoding Format
Tag Definitions

Palm File Formats Specification 81
 Preliminary modified 1/17/00

application. However, if one or more attributes are specified, the
defaults listed below apply (which may be different from Clipper).

End Tag
Delimited

No

Parameters Bit[5] flags Flags controlling these attributes:

cmlFlagHRIsPercent[4]
Set if the percent or width attributes
are included to specify rule width. The
default is true .

cmlFlagHRNoShade[3]
Set if the rule is not shaded. Not set if the
rule is shaded.

cmlFlagHRAlign[2-1]
An enumerated type that sets how the
rule is horizontally aligned if it is less
than the full width of the window. One of
{cmlAlignLeft , cmlAlignCenter ,
cmlAlignRight }.

cmlFlagHRCustom[0]
Set if other parameters are used. If not
set, this indicates that no other
parameters follow and a default rule is
used, as determined by the Clipper
application.

if (cmlFlagHRCustom)

 Uint16V size Height (thickness) of the rule in pixels. The
default is 1.

 if (cmlFlagHRIsPercent)

 Byte percent Relative width of the rule in percentage of
display width. The default is 100.

 else

 Uint16V width Absolute width of the rule in pixels.

PQA Encoding Format
Tag Definitions

82 Palm File Formats Specification
modified 1/17/00 Preliminary

Example // A default rule
Tag tag = cmlTagHorizontalRule
Bit[5] flags = 0
Text "Some random text"

// A custom rule
Tag tag = cmlTagHorizontalRule
Bit[5] flags = 0x13 // cmlFlagHRCustom,

cmlAlignCenter, cmlFlagHRIsPercent
Uint16V size = 3
Byte percent = 20

Other Elements

cmlTagClear

Description Indicates that the browser should insert a line break and avoid
floating images before continuing to draw text. Corresponds to the
HTML element <BR CLEAR>.

End Tag
Delimited

No

Parameters Bit[2] clearAlign
An enumerated type. One of:

cmlClearLeft
Break the line, and move vertically down
until there is a clear left margin (where
there are no floating images).

cmlClearAll
Break the line, and move vertically down
until there is a clear right margin (where
there are no floating images).

cmlClearRight
Break the line, and move vertically down
until both margins are clear of images.

PQA Encoding Format
Tag Definitions

Palm File Formats Specification 83
 Preliminary modified 1/17/00

Example Tag tag = cmlTagClear
Bit[2] clearAlign = cmlClearAll

cmlTagCMLEnd

Description Indicates the end of data for this resource.

End Tag
Delimited

No

Parameters None

Example Tag tag = cmlTagCMLEnd

PQA Encoding Format
Tag Definitions

84 Palm File Formats Specification
modified 1/17/00 Preliminary

Palm File Format Specification 85

TMP

TMP

TMP

TMP

TMP

TMP

TMP

TMP

TMP

TMP

TMP

TMP

Index

Numerics
5-bit special characters 25
8-bit encoding tag 46

A
address tag 49
alignment of paragraphs 48
anchor tag 74
anchor, named 78
appInfo block 8
ASCII encoding 28

B
background color 41
bit packed compression 24

ASCII encoding 28
image encoding 29
numeric parameter encoding 29
tag encoding 28
translating to uncompressed data 38

block quote tag 48
bold text 44

C
checkbox 60
clear tag 82
cmlCompressionTypeBitPacked 18
cmlCompressionTypeNone 18
cmlContentTypeImagePalmOS 18
cmlContentTypeTextCml 18
cmlTag8BitEncoding 46
cmlTagAddress 49
cmlTagAnchor 78
cmlTagBGColor 41
cmlTagBlockQuote 48
cmlTagCaption 69
cmlTagClear 82
cmlTagCMLEnd 41, 83
cmlTagForm 54
cmlTagH1 47
cmlTagH2 47
cmlTagH3 47
cmlTagH4 47

cmlTagH5 47
cmlTagH6 47
cmlTagHistoryListText 47
cmlTagHorizontalRule 80
cmlTagHyperlink 74
cmlTagImage 78
cmlTagInputCheckBox 60
cmlTagInputDatePicker 66
cmlTagInputHidden 63
cmlTagInputPassword 58
cmlTagInputRadio 59
cmlTagInputReset 62
cmlTagInputSubmit 61
cmlTagInputTextArea 63
cmlTagInputTextLine 57
cmlTagInputTimePicker 67
cmlTagLinkColor 42
cmlTagListDefinition 51
cmlTagListItemCustom 52
cmlTagListItemDefinition 54
cmlTagListItemNormal 52
cmlTagListItemTerm 54
cmlTagListOrdered 49
cmlTagListUnordered 50
cmlTagParagraphAlign 48
cmlTagSelect 64
cmlTagSelectItemCustom 65
cmlTagSelectItemNormal 65
cmlTagTable 67
cmlTagTableData 71
cmlTagTableHeader 72
cmlTagTableRow 70
cmlTagTextBold 44
cmlTagTextColor 42
cmlTagTextItalic 44
cmlTagTextMono 45
cmlTagTextSize 43
cmlTagTextStrike 44
cmlTagTextSub 46
cmlTagTextSup 45
cmlTagTextUnderline 46
color

background 41
link 42

Index

86 Palm File Format Specification
modified 1/17/00 Preliminary

text 42
compact data structure notation 29

data types 30
compressed PQA data 24
compression types 17
content types 17

D
data cell of table 71
data termination 41
database format 2
DatabaseHdrType 3
date picker 66
definition list start 51
definition, list 54

E
encoding format 21

F
form

checkbox 60
date picker 66
hidden field 63
password input line 58
radio button 59
reset button 62
selection item, custom 65
selection item, normal 65
selection menu 64
submit button 61
text area 63
text input line 57
time picker 67

form tag 54
format of PQA 21

G
graphic tag 78

H
header cell of table 72
heading tags 47

hidden field 63
history list tag 47
horizontal rule 80
HTML differences 23
HTML text content 18
hyperlink tag 74

I
image content 18
image encoding 29
image tag 78
input line 57
Int16V 31
Int8V 32
IntV 31
italic text 44

L
link color 42
list

custom item 52
definition in 54
definition start 51
normal item 52
ordered 49
term 54
unordered 50

M
monospace text 45

N
named anchor 78
numeric parameter encoding 29

O
ordered list 49

P
paragraph alignment 48
password input line 58
PDB header 3

record list 7

Index

Palm File Format Specification 87
 Preliminary modified 1/17/00

plain text content 18
PQA database format 2
PQA encoding format 21
PQA tags

definitions 41
overview 32

PqfWebDocRecordType 11

Q
quote, block 48

R
radio button 59
record list in PDB header 7
reset button 62
row, table 70
rule 80

S
selection menu 64
special 5-bit characters 25
strike-through text 44
submit button 61
subscript text 46
superscript text 45

T
table 67

data cell 71
header cell 72
row 70

table caption 69
tag

data type 35

definitions 41
encoding 28
PQA overview 32
text encoding 33

term, list 54
termination of data 41, 83
text

bold 44
color 42
encoding tags 33
italic 44
monospace 45
size 43
strike-through 44
subscript 46
superscript 45
underline 46

text area 63
Text type 35
TextZ type 36
time picker 67
translation of bit-packed to uncompressed data 38

U
Uint16V 31
Uint8V 31
UIntV 30
uncompressed notation 37
underline text 46
unordered list 50
unpacked notation 37

W
web content record 11

Index

88 Palm File Format Specification
modified 1/17/00 Preliminary

