
Appears in Solid Freeform Fabrication Symposium Proceedings, H. L. Marcus, et. al. (eds.),
pp. 1-12, The University of Texas at Austin, Austin, TX, 1991.

© 1991 RPI Rensselaer Design Research Center. All Rights Reserved.

A Flexible File Format for
Solid Freeform Fabrication

Stephen J. Rock
Michael J. Wozny

Rensselaer Design Research Center
Rensselaer Polytechnic Institute

Troy, New York 12180

Abstract
A flexible file format for Solid Freeform Fabrication data is presented which

significantly improves on the de-facto industry standard STL format. The new format
removes the redundancy present in STL files and can contain topological information. Its
specification flexibility allows users to balance storage and processing costs. Since facet
boundary models currently provide the greatest common denominator for data exchange
between many CAD systems, they are supported by this format. Additionally,
representation of CSG primitives is provided, as are capabilities to represent multiple
instances of both facet and CSG solids. Format extensibility, without obsoleting existing
programs, is made possible by interleaving the format schema with the data. User data can
be added to existing entities, or new entities can be created. This allows the addition of
NURBS based geometries in the future.

1 Introduction
No standard has been formally adopted for transfering Solid Freeform Fabrication

(SFF) data. The STL facet model format specified by 3D Sytems has become the de-facto
industry standard in the SFF community [1].
1.1 STL Format Limitations

Solid objects are represented as an unordered collection of triangular planar facets,
and each facet has an outward directed facet normal associated with it. Multiple solids are
allowed, although it is unclear from the interface specification whether these are allowed to
intersect other solids in the model.

Given only the data in an STL file, ensuring a model is physically realizable and is
not missing any information (model validity checking) is computationally expensive.
Infering model topology from this minimal information is also costly and the results are
subject to ambiguity caused by numerical imprecision. This suggests the need for an
alternative representation which carries greater information content and can reduce model
preprocessing demands. STL files also carry a significant amount of redundant
information. For each facet, vertex coordinates are specified explicitly. Process attributes
are mentioned in the specification but never developed. Both ASCII and Binary formats
exist and it is possible to translate between them. Additional constraints are placed on
model data. Ordinate values can never be zero or negative, and all ASCII format keywords
must contain only lower-case characters.
1.2 Higher Order Approximations

The need for an improved SFF model format and representation has been
recognized [2]. Arguments were made in support of using surface approximations, termed
Òprecise geometryÓ by the authors, instead of facet model approximations. Use of a single
modeling entity was also recommended. These are valid suggestions; however, to make

2

use of truly precise geometry, information must not be lost by approximation when
transfering CAD model data to the SFF process. Representing models by surface patch
approximation will certainly be more compact than planar facet approximation. A surface
patch approximation will also experience slower data volume growth as the geometry
approximation error tolerance is decreased.

While surface approximations are representationally more efficient than their facet
equivalents, other considerations must be analyzed before defining surface patch
approximations as the new and only SFF modeling entity. Model validity checking will
increase in complexity. Model slicing, while having fewer surface patches to intersect, will
also increase in complexity. Surface patch approximations must be generated, and this too
incurs computational cost. Triangular facet tessellations are also used in the field of
computer graphics [3] and algorithms tailored to SFF are beginning to emerge [4]. Code
development to support surface patch approximation will be more expensive than that for
facet approximation.
1.3 IGES & PDES/STEP

CAD system data transfer standardization provides another representational
alternative, and some standards exist. The Initial Graphics Exchange Specification (IGES)
began as a standard for representing graphical information [5]. It has since evolved to
include limited solid model representation capability with CSG primitives supported in
Version 4.0 and boundary representation support in Version 5.0. Unfortunately, these
representations are verbose [6]. The Standard for Exchange of Product Model Data
(STEP) standard is under development and is to represent the complete product model, not
just the geometry [7]. The generality of this representation is expected to make it verbose
with capabilities beyond those needed here.
1.4 2D Slice Contours

The representational alternatives discussed provide greater information content that
the STL Format file. Another alternative has been proposed which provides only slice
contour data to SFF processes [8]. Two dimensional slice contours are expected to hold
less information than a three dimensional model, and any compression gained by
correlation in the third dimension will be lost. However, each slice contour can be
provided as a precise representation. This moves the slicing process into the CAD system
and eliminates the need to tessellate solid models into approximate facet representations.
Unfortunately, this approach limits flexibility at the process controller and will likely
increase data transfer volume. New slicing orientations and part nesting arrangements will
be difficult to select at the process controller. Slicing in the CAD system effectively moves
process control to the processor running the CAD system. Spending design engineering
time dealing with SFF process control issues may not be cost effective. This approach also
fails to recognize that certain non-CAD data sources, such as reconstructed models from
medical imaging data, will likely continue to generate three dimensional facet model data
[9].
1.5 Facet Models

Facet models currently serve as the greatest common denominator between the
multitude of CAD systems in existence because many CAD vendors have developed
translators capable of generating facet model representations. Facet representations are also
very common when transforming scalar fields into three dimensional geometry (medical
imaging, remote sensing, etc.)[10, 11]. Facet approximation tolerance thresholds can be
decreased to achieve required model precision. While this increases storage demands, the
trend of continually decreasing storage cost devalues the consequences.

Facet models are not proposed as the optimum solution to the SFF data exchange
problem. They are only one alternative but should continue to be supported in future
representation schemes because of their greatest common denominator property, both
between CAD systems and other sources of geometrical models. CSG primitives are an

3

attractive representational addition to a new format because they are well defined. More
general standards tend to be verbose. This suggests a data exchange format tailored to SFF
applications is appropriate. In this paper, we present a flexible, extensible model format
which supports both facet solids and CSG solids. It supports multiple instancing of a
single solid object definitions as well as a number of SFF specific entities. Topological
information is provided for facet models to increase validity checking and processing
efficiency.

2 RPI Format Design Considerations
A number of design considerations for an improved SFF format, termed RPI

format, are presented in this section. The RPI format must be derivable from currently
accepted STL format data. A radical change which fails to maintain such compatibility will
gain poor acceptance. The RPI format must provide an extensible framework for
evolution. This includes provisions for adding new geometric entities, adding data to
existing entities, and adding non-geometric process data. The new format must also allow
flexibility, with respect to both format conformance and the amount of data stored. It is
also important to eliminate the redundancy present in STL format files.
2.1 Upward Compatibility

Upward compatibility from STL format to RPI format is possible. The RPI format
is capable of representing facet solids, but it includes additional information about facet
topology. Topological information is maintained by representing each facet solid entity
with indexed lists of vertices, edges, and faces. Instead of explicitly specifying the vertex
coordinates for each facet, a facet can reference them by index number. This contributes to
the goal of overall redundant information reduction.
2.2 Topological Information

Given an STL model, topological information can be inferred at some
computational expense. This is also true for the RPI format and is the mechanism by
which data volume flexibility is provided. Many possible combinations of topological data
can be maintained for facet solids in an RPI format file. In the simplest case, only a vertex
list and face list are provided. The vertex list is referenced directly by index values in the
face list. When normal data is included, this is informationally equivalent to the STL
format. It is not even necessary to specify facet normals as these can be computed based
on vertex ordering assuming the right hand rule is followed. In its most complete form, a
facet model can be represented by a vertex list, edge list, and face list. The edge list can
reference the two vertices and two faces which define each edge. The face list can
reference each faces vertices, edges, and three neighboring faces. Normals can also be
specified for each face. Any range of topology specification between these extremes is
permissible. When less topological information is provided, more CPU time will be
required to generate it. This flexibility allows storage and processing costs to be
appropriately balanced.
2.3 Conformance and Extensibility

Providing format conformance flexibility and format extensibility are tightly
coupled objectives. Both are achieved by imbedding the format schema within the data.
The schema defines the data which represents each entity. It not only defines variable
names and defines the order in which they occur, but it also specifies the data types for
each of these variables. This allows unrecognized variables to be skipped without
rendering the remaining data unreadable. It is not always desirable to omit unrecognized
data, as this could indicate a model error; however, assuming valid data, there are cases
where omitting unrecognized data is very useful. For example, the graphics technique of
Phong Shading utilizes vertex normal information which could be stored using the RPI
format [12]. This same file should be readable by an SFF processor which is completely
unaware of the existence of, or variable names used for, vertex normal data in the file. By
associating a data type with each variable name in the file, data corresponding to

4

unrecognized keywords can be read and discarded. This mechanism also allows entire
unrecognized entities to be skipped; a feature of the public domain Interchange File Format
(IFF) specification [13]. This allows the format to evolve without rendering existing
interpreters useless with each new format addition.

Imbedding format schema information in the data also allows the order in which
data is presented to be altered. Instead of enforcing specific data record ordering, the
variable names found in each schema definition determine the order in which data is
presented. Similar flexibility also exists at the entity level. Most model entities can appear
in any order, and it is the interpreterÕs job to derive the necessary information. This
provides conformance flexibility while placing a greater burden on the RPI format
interpreter.

New entities can be added to the format and new variables can be added to exiting
entities. Data types, however, can neither be added nor modified while preserving the
backward compatibility designed into the format. If an interpreter reads an unknown
variable, it can successfully continue processing the data because it knows what to read and
discard. If an unknown data type is used, the interpreter will not know how much
information to read and is unable to continue processing. Consequently, data type selection
during format specification is critical to ensure the formatÕs successful evolution. The data
types provided closely resemble those available in the C programming language [14].
Integers, single and double precision floating point values, strings of characters, and
boolean operations are supported. Additionally, a binary type is defined which supports
binary values of any length.
2.4 CSG Primitives

In addition to facet solids, the RPI format supports cuboid, cylinder, cone, sphere,
and tori CSG primitives. These are common in mechanical design and one study found
that more than 90% of an industrial sampling of parts could be constructed from them [15].
The primitive representation is also much more efficient than the corresponding facet
approximation. Transformation entities are provided so that actual solid coordinates do not
have to be individually repositioned. This is useful when orienting CSG primitives or
when attempting to nest larger collections of solids. The same solid or collection of solids
can be instanced multiple times without replicating the data. This serves to reduce data
redundancy and provide flexibility. Finally, non-geometrical entities are provided. These
allow process data to be maintained within the RPI format file. Included are entities which
represent the process type, scanning methodology, and provide notes for the machine
operator.

The benefits encompassed in the RPI format are not without cost. Developing an
interpreter which processes a format as flexible and extensible as the one described is non-
trivial. However, from a global perspective on effort, it seems complicating interpretation
for a few SFF producers is worth the benefit of simplifying format conformance, and
increasing storage and processing efficiency, for many times that number of end-users.

3 The RPI Format
An abridged specification of the RPI format is provided to illustrate the concepts

previously discussed. The format was developed in ASCII to facilitate cross-platform data
exchange and debugging, but attention has been given throughout format design to ensure a
reasonable binary representation mapping is possible. An RPI format file is composed of a
collection of entities, each of which internally defines the data it contains. Each entity
conforms to the syntax defined by the syntax diagram shown in Figure 3.1[16].

5

Entity
Name

Record
Count

Schema

Entity * Data

Schema

Variable
Name

Type
Definition

Int
>0

"?" "(" ")"

Type
Definition

Variable Type:
INT, FLT, DBL,

STR, BOOL,
BITn

If Record Count = 0

Type
Definition

Figure 3.1 - RPI Format Entity Syntax Diagram

Each entity is composed of an entity name, record count, schema definition, schema
termination symbol, and the corresponding data. The data is logically subdivided into
records which are made up of fields. Each record corresponds to the definition provided
by the Schema. Each field corresponds to one variable type in the Type Definition.

Variable types include integer (INT), single precision float (FLT), double precision
float (DBL), string (STR), boolean (BOOL), and binary representation n bits in length
(BITn) where n is a positive integer. All fields are separated by white space (space, tab,
newline, etc.), so strings with spaces must be enclosed in quotes. Strings may include any
of the standard escape sequences (\...) defined by the C programming language [14]. Any
variable type, or type definition enclosed in parenthesis, can be preceded by either an
integer or the Ò?Ó character. This represents a repeat count for the definition which it
precedes. An integer specifies a constant repeat count, while the Ò?Ó character specifies a
repeat count which varies from record to record. Each variable repeat count specification
causes the data it defines to be preceded by one integer field which identifies the number of
subsequent fields to be read for that particular record. Flexibility is increased by allowing
variable names to be omitted; however, there use is encouraged. This feature necessitates
that variable names be reserved words. The Ò*Ó character has been designated as the
schema termination symbol, and data records are expected to immediately follow it. The
syntax diagram for the Data is not shown because of its dependency on the Schema
definition. C style comments (/* ... */) are supported and are valid everywhere except in
quoted strings where they will be treated as part of the string.
3.1 Entity Definitions

Entity definitions exist for specifying facet solids, CSG solids, operations and
transformations on these solids, and process specific data. Standard variable name
definitions also exist for each entity. Space limitations dictate that only brief descriptions
be given for each entity, and some features are not discussed. Some examples regarding
facet model specification are omitted and can be found in section 3.2.

6

FACETSOLID
This defines the beginning or end of a facet solid representation.
Defined Variables: INDEX (INT) - Defines the index number of the facet solid.
Example(s): FACETSOLID 1 INDEX INT * i, where i is the solid index number.

FACETSOLID 0 * delimits the end of the previous facet solid.
VERTS
This defines the vertices used by a facet solid representation.
Defined Variables: INDEX (INT) - defines the index number for each vertex.

 X, Y, Z (DBL) - defines vertex location.coordinates.
EDGES
This defines the edges used by a facet solid representation.
Defined Variables: INDEX (INT) - defines the index number for each edge.

V1, V2 (INT) - defines vertex index numbers for the two vertices
which define an edge.
F1, F2 (INT) - defines face index numbers for faces meeting at the
edge.

FACES
This defines the faces used by a facet solid representation.
Defined Variables: INDEX (INT) - defines the index number for each face.

V1, V2, V3 (INT) - defines vertex index numbers for the three
vertices which define a face.
E1, E2, E3 (INT) - defines edge index numbers for the three edges
which define a face.
F12, F23, F31 (INT) - defines face index numbers for faces adjacent
to the face being defined. The numbering convention indicates the
which edge a neighboring face is sharing.
NX, NY, NZ (DBL) - define the normal direction vector for the face.

CUBOID, CYLINDER, CONE, SPHERE, & TORI
These entities define the five CSG primitive types supported.
Defined Variables: INDEX (INT) - defines the index number for each primitive.

CX, CY, CZ (DBL) - defines the center of a primitive.
D1, D2, D3 (3DBL) - defines the direction vectors.
L1, L2, L3 (DBL) - defines lengths.
R, R1, R2 (DBL) - defines radii.
Obviously, not all are used in any single primitive definition.

CSGOP
Defines a boolean operation on CSG and facet solids.
Defined Variables: INDEX (INT) - defines the index number for the resulting solid.

I1, I2 (INT) - defines the index numbers for each solid (either a
facet solid, CSG solid, TRANSform, or other CSGOPeration index
number) to be operated on.
OP (STR) - defines the operation. Defined operations include
union, intersection, difference, and invert. Invert uses only I1.

7

TRANS
Defines a transform operation which may be applied to any solid index number.
Defined Variables: INDEX (INT) - defines the index number of the transform result.

MAT44 (16DBL) - defines 16 entries of a 4 x 4 transform column
by column.

CSGROOT
Defines the root index value of a hybrid CSG tree which can include facet models.
Defined Variables: ROOT (INT) - defines the index number of the root entity.
PROCESSDATA
Defines SFF process information.
Defined Variables: PART_NAME (STR)

PROCESS (STR)
MATERIAL (STR)
SCAN_METHOD (STR)

INCLUDE
Allows inclusion of other RPI Format data files containing non-conflicting entity index
values.
Defined Variables: FILE (STR) - defines the filename, including path, for inclusion.

3.2 A Facet Model Example
An example of facet model definition using the RPI Format is provided. The data

provided is an excerpt from the 7160 facet model referenced in Figure 4.1.

/* The following file is a .RPI Flexible Format Facet File */
PROCESSDATA 1 PART_NAME STR * tooth.rpi
PROCESSDATA 1 PROCESS STR * SLS
PROCESSDATA 1 MATERIAL STR * Polycarbonate
PROCESSDATA 3 SCAN_METHOD STR * boundary halflap orientmod
FACETSOLID 1 INDEX INT * 1
VERTS 3582 INDEX INT X DBL Y DBL Z DBL *
1 83.6787 121.7 27.7256
2 84.3622 121.356 28.2707
3 84.2698 122.023 27.5492
¥¥¥
3580 125.606 100.531 81.6959
3581 122.387 95.68 83.1261
3582 122.708 106.524 82.3616
EDGES 10740 INDEX INT V1 INT V2 INT F1 INT F2 INT *
1 3483 3482 1 1792
2 3482 3480 1 1793
3 3483 3480 1 1791
¥¥¥
10738 11 18 7147 7151
10739 6 2 7149 7158
10740 3 2 7150 7160
FACES 7160 INDEX INT V1 INT V2 INT V3 INT
E1 INT E2 INT E3 INT F12 INT F23 INT F31 INT
NX DBL NY DBL NZ DBL *
1 3483 3482 3480 1 2 3 1792 1793 1791 0.755175 0.596069 0.272787
2 3350 3348 3347 4 5 6 1794 1795 1796 0.378247 0.844803 -0.378467
3 2387 2594 2592 7 8 9 1797 1798 1799 0.101944 -0.879524 -0.464806
¥¥¥

8

7158 6 4 2 5370 10719 10739 7125 1790 7149 -0.083132 -0.760829 -0.643605
7159 5 1 4 5368 10720 10734 7139 1790 7127 -0.148119 -0.821666 -0.550387
7160 3 2 1 5369 10732 10740 7150 1790 7138 0.184947 -0.709709 -0.679785
FACETSOLID 0

The entities currently defined do not make full use of the syntax flexibility provided
for defining schemas. None utilize the variable repeat count facility; however, now unused
features should not be ignored when developing parsers for the RPI format. If an
application needed to reference each face sharing a particular vertex, for example, variable
repeat count capability would be very useful.

4 Results
A conversion capability has been developed which allows RPI format files to be

generated from STL format data. This is a computationally expensive task because model
topology must be inferred from the unordered STL model facets. All work has been done
with ASCII format files. Comparisons drawn should remain valid when binary formats are
used because the ASCII and Binary representations do not differ significantly in
organization. Figure 4.1 contrasts the file size of STL Format files to corresponding RPI
Format files.

0

50
100

150
200

250
300

F
ile

 S
iz

e
(k

 B
yt

es
)

Test Part Facet Count
404 510 616 1192

STL Format

Full RPI Format

STL Equivalent RPI Format

Minimal RPI FormatKEY:
Compressed Files

0

0.5

1.0

1.5

2.0

F
ile

 S
iz

e
(M

 B
yt

es
)

Test Part Facet Count
6654 7160

Figure 4.1 - STL Format/RPI Format File Size Comparisons

The Full RPI Format file contains the full range of topological connectivity
information needed to make model slicing more efficient with the topological slicing
approach of [17]. The experimental topological slicer implementation interprets a sub-set,
supporting only single facet solids, of the RPI format specification previously defined to
avoid the costly step of inferring model topology from an STL file. The STL Equivalent
RPI Format file contains information content equivalent to that of an STL file, and the
Minimal RPI Format file contains the minimal information necessary for model
representation. Only the Full RPI Format file is suitable for active use; however, since it
can be generated at some computational expense from one of the other formats, this allows

9

a balance between storage and processing costs. The Minimal RPI Format file should
prove useful for archival storage.

The UNIX Compress utility was used to compress each of the files using adaptive
Lempel-Ziv coding [18]. The amount of compression provides some indication of how
much redundancy is present for each of the formats. Notice that while the Full RPI Format
file averages approximately 50% the size of the corresponding STL Format file, the
compressed STL file is typically marginally smaller than the compressed Full RPI Format
file. This highlights the redundancy present in STL Format files. Also note that the
compressed STL Equivalent RPI Format file is smaller than the compressed STL file in all
experimental cases shown. This suggests it may be suitable for archival purposes.

5 Conclusion
5.1 Conclusions

The RPI Format offers a number of features unavailable in the STL Format. The
format can represent CSG primitive models as well as facet models. Both can be operated
on by the boolean union, intersection, and difference operators. Provisions for solid
translation and multiple instancing are also provided. Process parameters, such as process
type, scan method, material, and even machine operator instructions, can be included in the
file. Facet models are more efficiently represented as redundancy is reduced. The flexible
format definition allows storage and processing costs to be balanced.

While these features are useful, perhaps the largest benefit of this format is its
extensibility. It provides for backward compatibility and allows users to include additional
non-SFF data, or new SFF data, in a file. Emphasis was placed on RPI Format design
considerations, not on specification of the defined entities, because this paper does not
attempt to define a new standard. A sub-set of the format specified has been used to our
benefit; however, it is by no means complete. The goal of this work is to provide an
extensible format which can evolve with new representational enhancements. This should
lessen the number of distinct file formats in use and eliminate the translators necessary to
convert between such formats.
5.2 Future Work

In the near term, a binary format equivalent to the ASCII RPI format presented
must be developed. Model precision requirements should be investigated to determine
what representational precision is necessary in a binary format. This is less of an issue in
ASCII format because any precision can be represented. It would also be useful to develop
a method for creating new data types which do not disable backward compatibility.

Research must be conducted to identify a surface patch suitable for solid
approximation. It is also important to develop basic algorithms which can approximate
CAD system entities with these surface patches. This resurrects the issue of primitive level
CAD system interfacing and the cost associated with developing such an interface. As the
PDES/STEP standard is developed, it should be evaluated as the potential primary
representation for SFF data transfer. It may be appropriate to allow a variety of entry
points to SFF processes; from high level CAD data through scan vector input to the process
controller. Advancements in controller technology may also influence the direction of
future SFF model formats.

Acknowledgements
This research was supported by NSF Grant DDM-8914212 as a subcontract

through the University of Texas Solid Freeform Fabrication program, and other grants of
the Rensselaer Design Research Center (RDRC) Industrial Associates Program. Any
opinions, findings, conclusions, or recommendations expressed in this publication are
those of the authors and do not necessarily reflect the views of the National Science
Foundation or any of the industrial sponsors.

10

We would like to thank Dick Aubin, Pratt & Whitney (a division of United
Technologies), for providing a number of industrial STL models. Research by James
Miller, RDRC, generated the facet model of the tooth nerve cavity from CT scan data
provided by William Lorensen, General Electric Corporate Research and Development. A
special thanks to Charles Gilman and James Miller for all the valuable comments and ideas
on early drafts of this paper.

11

REFERENCES
1. ÒStereolithography Interface Specification,Ó 3D Systems, Inc., June 1988.

2. James Darrah and Martin Wielgus, ÒA New CAD Model Format for SFF Machines?,Ó
Soild Freeform Fabrication Symposium Proceedings, University of Texas at Austin, Aug.
1990.

3. Reed D. Clay and Henry P. Moreton, ÒEfficient Adaptive Subdivision of Bezier
Surfaces,Ó Eurographics Ô88, Elsevier Science Publishers B.V., 1988.

4. X. Sheng and U. Tucholke, ÒOn Triangulating Surface Model for SLA,Ó Second
International Conference on Rapid Prototyping, Dayton, OH, 1991.

5. ÒThe Initial Graphics Exchange Specification (IGES) Version 5.0,Ó National Institute of
Standards and Technology, Gaithersburg, MD, 1990.

6. P.R. Wilson, I.D. Faux, M.C. Ostrowski, K.G. Pasquill, ÒInterfaces for Data Transfer
Between Solid Modeling Systems,Ó IEEE Computer Graphics and Applications, Jan. 1985

7. ÒProduct Data Exchange Specification (PDES) Testing Draft,Ó National Institute of
Standards and Technology, Gaithersburg, MD, 1988.

8. Richard J. Donahue and Robert S. Turner, ÒCAD Modeling and Alternative Methods of
Information Transfer for Rapid Prototyping Systems,Ó Second International Conference on
Rapid Prototyping, Dayton, OH, 1991.

9. James V. Miller, ÒOn GDMÕs: Geometrically Deformed Models for the Extraction of
Closed Shapes from Volume Data,Ó M.S. Thesis, Rensselaer Polytechnic Institute, Dec.
1990.

10. William E. Lorensen and Harvey E. Cline, ÒMarching Cubes: A High Resolution 3D
Surface Construction Algorithm,Ó Computer Graphics, Vol. 21No. 4, July 1987.

11. Lori Scarlatos and Theo Pavlidis, ÒHierarchical Triangulation Using Terrain Features,Ó
Visualization 90 Conf. Proc., Oct. 1990.

12. J.D. Foley, A. vanDam, S.K. Feiner, J.F. Hughes, Computer Graphics Principles
and Practice, second ed., Addison-Wesley Publishing Co., 1990.

13. ÒÔEA IFF 85Õ Standard for Interchange Format Files,Ó Commodore-Amiga Technical
Reference, pp. I-5 - I-24, 1985.

14. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice
Hall, Englewood Cliffs, NJ, 1988.

15. M.J. Pratt, ÒSolid Modeling and the Interface Between Design and Manufacture,Ó
IEEE Computer Graphics and Applications, Jul. 1984.

12

16. Derick Wood, Theory of Computation, John Wiley & Sons, Inc., 1987.

17. Stephen J. Rock and Michael J. Wozny, ÒUtilizing Topological Information to
Increase Scan Vector Generation Efficiency,Ó to appear in Soild Freeform Fabrication
Symposium Proceedings, University of Texas at Austin, Aug. 1991.

18. ÒSunOS Reference Manual,Ó 800-1751-10, Revision A, Sun Microsystems, Inc.,
1988, p.83.

KEYWORDS
RPI Format, STL Format, Facet Model, Solid Modeling, Modeling Representation,
Flexible File Format,

