Solve differential equations, low order method, displaying plot.

  Integrate a system of ordinary differential equations using

  2nd and 3rd order Runge-Kutta formulas and plot the time evolution

  of the first three components of the solution.

  [T,Y] = ODE23VQEGTX('yprime', T0, Tfinal, Y0) integrates the system

  of ordinary differential equations described by the M-file

  YPRIME.M over the interval T0 to Tf and using initial

  conditions Y0.




  F     - String containing name of user-supplied problem description.

          Call: yprime = fun(t,y) where F = 'fun'.

          t      - Time (scalar).

          y      - Solution column-vector.

          yprime - Returned derivative column-vector; yprime(i) = dy(i)/dt.

  t0    - Initial value of t.

  tfinal- Final value of t.

  y0    - Initial value column-vector.

  tol   - The desired accuracy. (Default: tol = 1.e-3).



  In addition, setup the graphics with:

     axis([y1min y1max y2min y2max y3min y3max]);







  A 3-D plot of the orbit of y(1:3) as functions of t.




  y     - The solution at tfinal.