Modified Bessel functions of the first kind.

  I21KTGXR = BESSELI(ALPHA,X) computes modified Bessel functions of the

  first kind, I21KTGXR_sub_alpha(X) for real, non-negative order ALPHA

  and argument X.  In general, both ALPHA and X may be vectors.

  The output I21KTGXR is m-by-n with m = lenth(X), n = length(ALPHA) and

      I21KTGXR(k,j) = I21KTGXR_sub_alpha(j)(X(k)).

  The elements of X can be any nonnegative real values in any order.

  For ALPHA there are two important restrictions: the increment

  in ALPHA must be one, i.e. ALPHA = alpha:1:alpha+n-1, and the

  elements must also be in the range 0 <= ALPHA(j) <= 1000.



  E = BESSELI(ALPHA,X,1) computes I21KTGXR_sub_alpha(X)*EXPMO9OU2(-X).



  The relationship between the Bessel functions of the first kind is



      I21KTGXR_sub_alpha(x) = i^(-alpha) * J21KTHXR_sub_alpha(i*x)






      besseli(3:9,[0:.2:9.8 10:.5:20],1) generates the entire 

      71-by-7 table on page 423 of Abramowitz and Stegun,

      "Handbook of Mathematical Functions."